Browse > Article
http://dx.doi.org/10.12989/sem.2015.56.2.157

Effects of mixed contents of carbon nanoreinforcements on the impact resistance of epoxy-based nanocomposites  

Ayatollahi, M.R. (Fatigue and Fracture Laboratory, Center of Excellence in Experimental Solid Mechanics and Dynamics, School of Mechanical Engineering, Iran University of Science and Technology)
Naeemi, A.R. (Fatigue and Fracture Laboratory, Center of Excellence in Experimental Solid Mechanics and Dynamics, School of Mechanical Engineering, Iran University of Science and Technology)
Alishahi, E. (Fatigue and Fracture Laboratory, Center of Excellence in Experimental Solid Mechanics and Dynamics, School of Mechanical Engineering, Iran University of Science and Technology)
Publication Information
Structural Engineering and Mechanics / v.56, no.2, 2015 , pp. 157-167 More about this Journal
Abstract
The impact behavior of epoxy-based nanocomposites reinforced with carbon nano tube (CNT), carbon nano fiber (CNF) and mixed contents of these nanoparticles was investigated using Izod impact test. The results showed that while the impact strength of nanocomposites containing 1 wt% of CNT and 1 wt% of CNF increased 19% and 13% respectively, addition of mixed contents of these nanofillers (0.5-0.5 wt%) demonstrated higher improvement (21%) in the impact resistance. The trend of the results is explained on the basis of different fracture mechanisms of nanocomposites. Furthermore, the fracture surface of specimens and the dispersion state of nanoenhancers have been studied using scanning electron microscopy (SEM) photographs.
Keywords
nano-structures; resins; impact behavior; mechanical testing;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Kinloch, A.J. and Taylor, A.C. (2006), "The mechanical properties and fracture behaviour of epoxy-inorganic micro- and nano-composites", J. Mater. Sci., 41, 3271-3297.   DOI
2 Laurenzi, S., Pastore, R., Giannini, G. and Marchetti, M. (2013), "Experimental study of impact resistance in multi-walled carbon nanotube reinforced epoxy", Compos. Struct., 99, 62-68.   DOI
3 Lee, J. and Yee, A.F. (2001), "Inorganic particle toughening II toughening mechanisms of glass bead filled epoxies", Polym., 42, 589-597.   DOI
4 Liang, Y.L. and Pearson, R.A. (2010), "The toughening mechanism in hybrid epoxy-silica-rubber nanocomposites (HESRNs)", Polym., 51, 4880-4890.   DOI
5 Liu, L. and Wagner, H.D. (2005), "Rubbery and glassy epoxy resins reinforced with carbon nanotubes", Compos. Sci. Tech., 65, 1861-1868.   DOI
6 Luo, D., Wang, W.X. and Takao, Y. (2007), "Effects of the distribution and geometry of carbon nanotubes on the macroscopic stiffness and microscopic stresses of nanocomposites", Compos. Sci. Tech., 67, 2947-2958.   DOI
7 Ma, P.C., Mo, S.Y., Tang, B.Z. and Kim, J.K. (2010a), "Dispersion, interfacial interaction and re-agglomeration of functionalized carbon nanotubes in epoxy composites", Carbon, 48, 1824-1834.   DOI
8 Ma, P.C., Siddiqui, N.A., Marom, G. and Kim, J.K. (2010b), "Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review", Compos. Part A: Appl. Sci. Manuf., 41, 1345-1367.   DOI
9 Miyagawa, H. and Drzal, L.T. (2005), "Effect of oxygen plasma treatment on mechanical properties of vapor grown carbon fiber nanocomposites", Compos. Part A: Appl. Sci. Manuf., 36, 1440-1448.   DOI
10 Roy, N., Sengupta, R. and Bhowmick, A.K. (2012), "Modifications of carbon for polymer composites and nanocomposites", Prog. Polym. Sci., 37, 781-819.   DOI   ScienceOn
11 Seshadri, M. and Saigal, S. (2007), "Crack Bridging in Polymer Nanocomposites", J. Eng. Mech., 133, 911-918.   DOI
12 Shadlou, S., Alishahi, E. and Ayatollahi, M.R. (2013), "Fracture behavior of epoxy nanocomposites reinforced with different carbon nano-reinforcements", Compos. Struct., 95, 577-581.   DOI
13 Song, Y.S. and Youn, J.R. (2005), "Influence of dispersion states of carbon nanotubes on physical properties of epoxy nanocomposites", Carbon, 43, 1378-1385.   DOI
14 Sui, G., Zhong, W.H., Liu, M.C. and Wu, P.H. (2009), "Enhancing mechanical properties of an epoxy resin using "liquid nano-reinforcements", Mater. Sci. Eng. A, 512, 139-142.   DOI   ScienceOn
15 Wagner, H.D., Ajayan, P.M. and Schulte, K. (2013), "Nanocomposite toughness from a pull-out mechanism", Compos. Sci. Tech., 83, 27-31.   DOI
16 Wang, X., Jin, J. and Song, M. (2013), "An investigation of the mechanism of graphene toughening epoxy", Carbon, 65, 324-333.   DOI   ScienceOn
17 Wetzel, B., Haupert, F. and Qiu Zhang, M. (2003), "Epoxy nanocomposites with high mechanical and tribological performance", Compos. Sci. Tech., 63, 2055-2067.   DOI
18 Wetzel, B., Rosso, P., Haupert, F. and Friedrich, K. (2006), "Epoxy nanocomposites-fracture and toughening mechanisms", Eng. Fract. Mech., 73, 2375-2398.   DOI
19 Zhang, H. and Zhang, Z. (2007), "Impact behaviour of polypropylene filled with multi-walled carbon nanotubes", Eur. Polym. J., 43, 3197-3207.   DOI
20 Zhang, W., Picu, R.C. and Koratkar, N. (2008), "The effect of carbon nanotube dimensions and dispersion on the fatigue behavior of epoxy nanocomposites", Nanotechnology, 19, 285709.   DOI
21 Zhao, S., Schadler, L., Duncan, R., Hillborg, H. and Auletta, T. (2008a), "Mechanisms leading to improved mechanical performance in nanoscale alumina filled epoxy", Compos. Sci. Tech., 68, 2965-2975.   DOI
22 Zhou, Y., Pervin, F., Lewis, L. and Jeelani, S. (2008b), "Fabrication and characterization of carbon/epoxy composites mixed with multi-walled carbon nanotubes", Mater. Sci. Eng.: A, 475, 157-65.   DOI
23 Ayatollahi, M.R., Shadlou, S. and Shokrieh, M.M. (2011b), "Correlation between aspect ratio of MWCNTs and mixed mode fracture of epoxy based nanocomposites", Mater. Sci. Eng.: A, 528, 6173-6178.   DOI
24 Al-Saleh, M.H. and Sundararaj, U. (2011), "Review of the mechanical properties of carbon nanofiber/ polymer composites", Compos. Part A, Appl. Sci. Manuf., 42, 2126-2142.   DOI   ScienceOn
25 Alishahi, E., Shadlou, S., Doagou, R.S. and Ayatollahi, M.R. (2013), "Effects of carbon nanoreinforcements of different shapes on the mechanical properties of epoxy-based nanocomposites", Macromol. Mater. Eng., 298, 670-678.   DOI
26 Ayatollahi, M.R., Alishahi, E. and Shadlou, S. (2011a), "Mechanical Behavior of Nanodiamond/Epoxy Nanocomposites", Int. J. Fract., 170, 95-100.   DOI
27 Ayatollahi, M.R., Shadlou, S. and Shokrieh, M.M. (2011c), "Fracture toughness of epoxy/multi-walled carbon nanotube nano-composites under bending and shear loading conditions", Mater. Des., 32, 2115-2124.   DOI
28 Ayatollahi, M.R., Shadlou, S., Shokrieh, M.M. and Chitsazzadeh, M. (2011d), "Effect of multi-walled carbon nanotube aspect ratio on mechanical and electrical properties of epoxy-based nanocomposites", Polym. Test., 30, 548-556.   DOI   ScienceOn
29 Ayatollahi, M.R., Shadlou, S. and Shokrieh, M.M. (2011e), "Mixed mode brittle fracture in epoxy/multi-walled carbon nanotube nanocomposites", Eng. Fract. Mech., 78, 2620-2632.   DOI
30 Bortz, D.R., Merino, C. and Martin-Gullon, I. (2011), "Carbon nanofibers enhance the fracture toughness and fatigue performance of a structural epoxy system", Compos. Sci. Tech., 71, 31-38.   DOI
31 Geng, Y., Liu, M.Y., Li, J., Shi, X.M. and Kim, J.K. (2008), "Effects of surfactant treatment on mechanical and electrical properties of CNT/epoxy nanocomposites", Compos. Part A: Appl. Sci. Manuf., 39, 1876-1883.   DOI
32 Chen, J., Kinloch, A.J., Sprenger, S. and Taylor, A.C. (2013), "The mechanical properties and toughening mechanisms of an epoxy polymer modified with polysiloxane-based core-shell particles", Polym., 54, 4276-4289.   DOI
33 Deng, S., Zhang, J., Ye, L. and Wu, J. (2008), "Toughening epoxies with halloysite nanotubes", Polym., 49, 5119-5127.   DOI
34 Fidelus, J.D., Wiesel, E., Gojny, F.H., Schulte, K. and Wagner, H.D. (2005), "Thermo-mechanical properties of randomly oriented carbon/epoxy nanocomposites", Compos. Part A: Appl. Sci. Manuf., 36, 1555-1561.   DOI
35 Hedia, H.S., Allie, L., Ganguli, S. and Aglan, H. (2006), "The influence of nanoadhesives on the tensile properties and Mode-I fracture toughness of bonded joints", Eng. Fract. Mech., 73, 1826-1832.   DOI
36 Hirsch, A. and Vostrowsky, O. (2005), Functionalization of Carbon Nanotubes, Springer Berlin Heidelberg.
37 Hsieh, T.H., Kinloch, A.J., Masania, K., Taylor, A.C. and Sprenger, S. (2010), "The mechanisms and mechanics of the toughening of epoxy polymers modified with silica nanoparticles", Polym., 51, 6284-6294.   DOI
38 Johnsen, B.B., Kinloch, A.J., Mohammed, R.D., Taylor, A.C. and Sprenger, S. (2007), "Toughening mechanisms of nanoparticle-modified epoxy polymers", Polym., 48, 530-541.   DOI
39 Mimura, K., Ito, H. and Fujioka, H. (2001), "Toughening of epoxy resin modified with in situ polymerized thermoplastic polymers", Polym., 9223-9233.