• Title/Summary/Keyword: carbon dioxide separation

Search Result 192, Processing Time 0.025 seconds

Technological Trends in Polymer Gas Separation Membrane for Carbon Neutrality (탄소중립을 위한 고분자 기체분리막의 기술 동향)

  • Khalid Muhammad Tayyab;Chul Ho Park
    • Membrane Journal
    • /
    • v.34 no.3
    • /
    • pp.172-181
    • /
    • 2024
  • Many countries have passed laws to achieve Nationally Determined Contribution (NDC) which is a climate action plan to reduce greenhouse gas emissions and adapt to climate impacts. Although there are various technologies to achieve NDC targets, membrane technologies pose dramatical attractions for the purification of gaseous greenhouse gases or energy sources. Therefore, this review will provide the technological trends of polymeric membranes among various materials due to the advantages of the feasible fabrication process and easy scale-up.

Molecular Sieve Properties for $CH_4/CO_2$ of Activated Carbon Fibers Prepared by Benzene Deposition (벤젠 증착에 의해 제조된 활성탄소섬유의 $CH_4/CO_2$ 분자체 성질)

  • Moon, Seung-Hyun;Shim, Jae-Woon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.6
    • /
    • pp.614-619
    • /
    • 2005
  • The activated carbon fibers of different surface area and pore structures were modified by carbon deposition from the pyrolysis of benzene, in an attempt to obtain carbon molecular sieves of high adsorption capacity and selectivity for the separation of $CO_2/CH_4$ gas mixtures. The ACFs molecular sieves prepared from different temperature and time were tested by the static adsorption of $CO_2$ and $CH_4$ gas, and their pore structures were characterized by the $N_2$ adsorption isotherms. We are able to prepare ACF molecular sieve with good selectivity for $CO_2/CH_4$ separation and showing acceptable adsorption capacities from the change of porosity by carbon deposition of pyrolyzed benzene.

Control of Nano-Structure of Ceramic Membrane and Its Application (세라믹 멤브레인의 나노구조 제어 및 응용)

  • Lee, Hye-Ryeon;Seo, Bong-Kuk;Choi, Yong-Jin
    • Membrane Journal
    • /
    • v.22 no.2
    • /
    • pp.77-94
    • /
    • 2012
  • Amorphous ceramic membranes have been developed for gas phase separation and liquid phase separation (water treatment, wastewater treatment and separation of organic solvent or compounds) because of their thermal stability and solvent resistance. In this paper, ceramic membranes were categorized by membrane pore size and materials, and summarized for hydrogen separation, carbon dioxide separation, membrane reactor, pervaporation and water treatment with membrane structure and properties.

Supported Ionic Liquid Membrane Preparation for Carbon Dioxide Separation (이산화탄소 분리를 위한 이온성액체 지지분리막의 제조)

  • Choi, Mi Young;Chung, Kun Yong
    • Membrane Journal
    • /
    • v.22 no.4
    • /
    • pp.280-283
    • /
    • 2012
  • The study is aiming to prepare supported ionic liquid membranes for carbon dioxide separation efficiently. The ionic liquid, [bmim][${PF_6}^-$] (1-butyl-3-methyl-imidazolium hexafluorophosphate) was fixed in the pores of PVDF micro-filtration membrane with a nominal pore size 0.1 ${\mu}m$. The permeabilities of $N_2$, $H_2$ and $CO_2$ gases through the prepared ionic liquid membrane were 0.075, 0.203 and 1.380 GPU, respectively. The selectivities of $CO_2/N_2$, $H_2/N_2$ were 14.2 and 2.69, respectively. Also, the supported ionic liquid membrane could be operated stably up to 2.0 bar with the immobilization of ionic liquid in the pores.

Photoelectrochemical Water Oxidation and $CO_2$ Conversion for Artificial Photosynthesis

  • Park, Hyunwoong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.70-70
    • /
    • 2013
  • As the costs of carbon-footprinetd fuels grow continuously and simultaneously atmospheric carbon dioxide concentration increases, solar fuels are receiving growing attention as alternative clean energy carriers. These fuels include molecular hydrogen and hydrogen peroxide produced from water, and hydrocarbons converted from carbon dioxide. For high efficiency solar fuel production, not only light absorbers (oxide semiconductors, Si, inorganic complexes, etc) should absorb most sunlight, but also charge separation and interfacial charge transfers need to occur efficiently. With this in mind, this talk will introduce the fundamentals of solar fuel production and artificial photosynthesis, and then discuss in detail on photoelectrochemical (PEC) water splitting and CO2 conversion. This talk largely divides into two section: PEC water oxidation and PEC CO2 reduction. The former is very important for proton-coupled electron transfer to CO2. For this oxidation, a variety of oxide semiconductors have been tested including TiO2, ZnO, WO3, BiVO4, and Fe2O3. Although they are essentially capable of oxidizing water into molecular oxygen, the efficiency is very low primarily because of high overpotentials and slow kinetics. This challenge has been overcome by coupling with oxygen evolving catalysts (OECs) and/or doping donor elements. In the latter, surface-modified p-Si electrodes are fabricated to absorb visible light and catalyze the CO2 reduction. For modification, metal nanoparticles are electrodeposited on the p-Si and their PEC performance is compared.

  • PDF

Optimal Site Selection of Carbon Storage Facility using Satellite Images and GIS (위성영상과 GIS를 활용한 CO2 지중저장 후보지 선정)

  • Hong, Mi-Seon;Sohn, Hong-Gyoo;Jung, Jae-Hoon;Cho, Hyung-Sig;Han, Soo-Hee
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.1
    • /
    • pp.43-49
    • /
    • 2011
  • In the face of growing concern about global warming, increasing attention has been focused on the reduction of carbon dioxide emissions. One method to mitigating the release of carbon dioxide is Carbon Capture and Storage (CCS). CCS includes separation of carbon dioxide from industrial emission in plants, transport to a storage site, and long-term isolation in underground. It is necessary to conduct analyses on optimal site selection, surface monitoring, and additional effects by the construction of CCS facility in Gyeongsang basin, Korea. For the optimal site selection, necessary data; geological map, landcover map, digital elevation model, and slope map, were prepared, and a weighted overlay analysis was performed. Then, surface monitoring was performed using high resolution satellite image. As a result, the candidate region was selected inside Gyeongnam for carbon storage. Finally, the related regulations about CCS facility were collected and analyzed for legal question of selected site.

Gas Separation of Pyrolyzed Polymeric Membranes: Effect of Polymer Precursor and Pyrolysis Conditions

  • Jung, Chul-Ho;Kim, Gun-Wook;Han, Sang-Hoon;Lee, Young-Moo
    • Macromolecular Research
    • /
    • v.15 no.6
    • /
    • pp.565-574
    • /
    • 2007
  • In this study, five representative, commercially available polymers, Ultem 1000 polyetherimide, Kapton polyimide, phenolic resin, polyacrylonitrile and cellulose acetate, were used to prepare pyrolyzed polymer membranes coated on a porous {\alpha}-alumina$ tube via inert pyrolysis for gas separation. Pyrolysis conditions (i.e., final temperature and thermal dwell time) of each polymer were determined using a thermogravimetric method coupled with real-time mass spectroscopy. The surface area and pore size distribution of the pyrolyzed materials derived from the polymers were estimated from the nitrogen adsorption/desorption isotherms. Pyrolyzed membranes from polymer precursors exhibited type I sorption behavior except cellulose acetate (type IV). The gas permeation of the carbon/{\alpha}-alumina$ tubular membranes was characterized using four gases: helium, carbon dioxide, oxygen and nitrogen. The polyetherimide, polyimide, and phenolic resin pyrolyzed polymer membranes showed typical molecular sieving gas permeation behavior, while membranes from polyacrylonitrile and cellulose acetate exhibited intermediate behavior between Knudsen diffusion and molecular sieving. Pyrolyzed membranes with molecular sieving behavior (e.g., polyetherimide, polyimide, and phenolic resin) had a $CO_2/N_2$ selectivity of greater than 15; however, the membranes from polyacrylonitrile and cellulose acetate with intermediate gas transport behavior had a selectivity slightly greater than unity due to their large pore size.

Preparation of water-swollen-hydrogel membrane for gas separation. I. (기체 분리용 수팽윤성 분리막 제조. I.)

  • 박유인;이규호
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1996.10a
    • /
    • pp.43-44
    • /
    • 1996
  • Water-swollen-hydrogel membranes for gas separation were prepared by dipcoating and thermal crosslinking of poly(vinylalcohol) (PVA) - poly(acrylacid) (PAA) blends on asymmetric porous polyetherimide(PEI) supporters. The polyetherimide supporters, prepared by phase inversion of polyetherimide solutions in N-methylpyrrolidone(NMP) (composition of PEI/NMP=25/75), had good heat and chemical resistane. The coating materials with different blending ratios of PVA/PAA(=90/10, 80/20, 70/30) were characterized with differential scanning calorimetry (DSC), infrared spectroscopy(IR) and the water swelling ratios. The permeabilities and the separation factors of carbon dioxide through these membranes were measured by a mass flow meter and gas chromatograph at different temperatures, respectively, under a vacuum mode of downstream.

  • PDF

An Experimental Study on PAG Oil Separation Characteristics of an Oil Separator for a $CO_2$ Refrigeration system ($CO_2$ 냉동시스템의 오일 분리기에서 PAG오일 분리 특성에 관한 실험적 연구)

  • Cho, Eun-Young;Lee, Sung-Kwang;Kang, Byung-Ha;Kim, Suk-Hyun
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.271-276
    • /
    • 2008
  • The oil trap in oil separator is one of the most important characteristics for normal operation of compressor. In this study, oil separation characteristics has been investigated for $CO_2$/PAG mixture using a gravity type of oil separator. The experimental study has been carried out in the range of oil concentration 0 to 5 weight-percent and the mixture temperature range of $0^{\circ}C$ to $15^{\circ}C$. The results obtained indicate that oil separation ratio in oil separator is increased with an increase in the oil concentration and mixture temperature.

  • PDF

An Experimental Study on Oil Separation Characteristics of $CO_2$/PAG Oil Mixture in the Oil Separator (오일 분리기에서 $CO_2$/PAG오일 혼합물의 오일 분리특성에 관한 실험적 연구)

  • Kim, Kyung-Jae;Lee, Sung-Kwang;Cho, Eun-Young;Kang, Byung-Ha;Kim, Suk hyun
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.131-136
    • /
    • 2008
  • The oil separation in an oil separator is one of the most important characteristics for proper compressor operation. In this study, a gravity type of oil separator is used. Oil separation characteristics has been investigated for $CO_2$/PAG mixture in the range of oil concentration 0 to 5 weight-percent and the mixture temperature range of $5^{\circ}C$ to $15^{\circ}C$ and $70^{\circ}C$ to $90^{\circ}C$. The results obtained indicate that the oil separation is increased with an increase in the oil concentration. It is also found that the oil separation in liquid state is increased with an increase in the mixture temperature while the oil separation in gas state is decreased.

  • PDF