• Title/Summary/Keyword: carbohydrate-binding module (CBM)

Search Result 11, Processing Time 0.021 seconds

Improving Endoglucanase Activity by Adding the Carbohydrate-Binding Module from Corticium rolfsii

  • Tang, Zizhong;Chen, Hui;Chen, Lijiao;Liu, San;Han, Xueyi;Wu, Qi
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.4
    • /
    • pp.440-446
    • /
    • 2014
  • The carbohydrate-binding module (CBM) is an important domain of most cellulases that plays a key role in the hydrolysis of cellulose. The neutral endoglucanase (EG1) gene was reconstructed. A redesigned endoglucanase, named EG2, was constructed with a CBM containing a linker from Corticium rolfsii (GenBank Accession No. D49448). The redesigned EG genes were expressed in Escherichia coli, and their characteristics are discussed. Results showed that the degradation of cellulose by EG2 was about double that by EG1. The specific activities of EG1 and EG2 were tested under optimal conditions, and EG2 had higher activity ($169.1{\pm}2.74$ U/mg) toward CMC-Na than did EG1 ($84.0{\pm}1.98$) in the process of cellulose degradation. The optimal pH and temperature, pH stability, and heat stability of EG1 and EG2 were similar. Results indicated that the CBM plays an essential role in the hydrolysis of cellulose. We can improve EG's catalytic power by adding the CBM from Corticium rolfsii.

Roles of Carbohydrate-Binding Module (CBM) of an Endo-β-1,4-Glucanase (Cel5L) from Bacillus sp. KD1014 in Thermostability and Small-Substrate Hydrolyzing Activity

  • Lee, Jae Pil;Shin, Eun-Sun;Cho, Min Yeol;Lee, Kyung-Dong;Kim, Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.12
    • /
    • pp.2036-2045
    • /
    • 2018
  • An endo-${\beta}$-1,4-glucanase gene, cel5L, was cloned using the shot-gun method from Bacillus sp.. The gene, which contained a predicted signal peptide, encoded a protein of 496 amino acid residues, and the molecular mass of the mature Cel5L was estimated to be 51.8 kDa. Cel5L contained a catalytic domain of glycoside hydrolase (GH) family 5 and a carbohydrate-binding module family 3 (CBM_3). Chromatography using HiTrap Q and CHT-II resulted in the isolation of two truncated forms corresponding to 50 (Cel5L-p50) and 35 kDa (Cel5L-p35, CBM_3-deleted form). Both enzymes were optimally active at pH 4.5 and $55^{\circ}C$, but had different half-lives of 4.0 and 22.8 min, respectively, at $70^{\circ}C$. The relative activities of Cel5L-p50 and Cel5L-p35 for barley ${\beta}$-glucan were 377.0 and 246.7%, respectively, compared to those for carboxymethyl-cellulose. The affinity and hydrolysis rate of pNPC by Cel5L-p35 were 1.7 and 3.3 times higher, respectively, than those by Cel5L-p50. Additions of each to a commercial enzyme set increased saccharification of pretreated rice straw powder by 17.5 and 21.0%, respectively. These results suggest CBM_3 is significantly contributing to thermostability, and to affinity and substrate specificity for small substrates, and that these two enzymes could be used as additives to enhance enzymatic saccharification.

Cloning, Sequencing, and Expression of the Gene Encoding a Multidomain Endo-$\beta$-1,4-Xylanase from Paenibacillus curdlanolyticus B-6, and Characterization of the Recombinant Enzyme

  • Waeonukul, Rattiya;Pason, Patthra;Kyu, Khin Lay;Sakka, Kazuo;Kosug, Akihiko;Mori, Yutaka;Ratanakhanokchai, Khanok
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.3
    • /
    • pp.277-285
    • /
    • 2009
  • The nucleotide sequence of the Paenibacillus curdlanolyticus B-6 xyn10A gene, encoding a xylanase Xyn10A, consists of 3,828 nucleotides encoding a protein of 1,276 amino acids with a predicted molecular mass of 142,726 Da. Sequence analysis indicated that Xyn10A is a multidomain enzyme comprising nine domains in the following order: three family 22 carbohydrate-binding modules (CBMs), a family 10 catalytic domain of glycosyl hydrolases (xylanase), a family 9 CBM, a glycine-rich region, and three surface layer homology (SLH) domains. Xyn10A was purified from a recombinant Escherichia coli by a single step of affinity purification on cellulose. It could effectively hydrolyze agricultural wastes and pure insoluble xylans, especially low substituted insoluble xylan. The hydrolysis products were a series of short-chain xylooligosaccharides, indicating that the purified enzyme was an endo-$\beta$-1,4-xylanase. Xyn10A bound to various insoluble polysaccharides including Avicel, $\alpha$-cellulose, insoluble birchwood and oat spelt xylans, chitin, and starches, and the cell wall fragments of P. curdlanolyticus B-6, indicating that both the CBM and the SLH domains are fully functioning in the Xyn10A. Removal of the CBMs from Xyn10A strongly reduced the ability of plant cell wall hydrolysis. These results suggested that the CBMs of Xyn10A play an important role in the hydrolysis of plant cell walls.

A Novel pH-Stable, Bifunctional Xylanase Isolated from a Deep-Sea Microorganism, Demequina sp. JK4

  • Meng, Xin;Shao, Zongze;Hong, Yuzhi;Lin, Ling;Li, Chanjuan;Liu, Ziduo
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.10
    • /
    • pp.1077-1084
    • /
    • 2009
  • A genomic library was constructed to clone a xylanase gene (Mxyn10) from Demequina sp. JK4 isolated from a deep sea. Mxyn10 encoded a 471 residue protein with a calculated molecular mass of 49 kDa. This protein showed the highest sequence identity (70%) with the xylanase from Streptomyces lividans. Mxyn10 contains a catalytic domain that belongs to the glycoside hydrolase family 10 (GH10) and a carbohydrate-binding module (CBM) belonging to family 2. The optimum pH and temperature for enzymatic activity were pH 5.5 and $55^{\circ}C$, respectively. Mxyn10 exhibited good pH stability, remaining stable after treatment with buffers ranging from pH 3.5 to 10.0. The protein was not significantly affected by a variety of chemical reagents, including some compounds that usually inhibit the activity of other related enzymes. In addition, Mxyn10 showed activity on cellulose. These properties mark Mxyn10 as a potential enzyme for industrial application and saccharification processes essential for bioethanol production.

Cloning and Characterization of a Novel Mannanase from Paenibacillus sp. BME-14

  • Fu, Xiaoyu;Huang, Xiaoluo;Liu, Pengfu;Lin, Ling;Wu, Gaobing;Li, Chanjuan;Feng, Chunfang;Hong, Yuzhi
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.3
    • /
    • pp.518-524
    • /
    • 2010
  • A mannanase gene (man26B) was obtained from a sea bacterium, Paenibacillus sp. BME-14, through the constructed genomic library and inverse PCR. The gene of man26B had an open reading frame of 1,428 bp that encoded a peptide of 475- amino acid residues with a calculated molecular mass of 53 kDa. Man26B possessed two domains, a carbohydrate binding module (CBM) belonging to family 6 and a family 26 catalytic domain (CD) of glycosyl hydrolases, which showed the highest homology to Cel44C of P. polymyxa (60% identity). The optimum pH and temperature for enzymatic activity of Man26B were 4.5 and $60^{\circ}C$, respectively. The activity of Man26B was not affected by $Mg^{2+}$ and $Co^{2+}$, but was inhibited by $Hg^{2+},\;Ca^{2+},\;Cu^{2+},\;Mn^{2+},\;K^+,\;Na^+$, and $\beta$-mercaptoethanol, and slightly enhanced by $Pb^{2+}$ and $Zn^{2+}$. EDTA did not affect the activity of Man26B, which indicates that it does not require divalent ions to function. Man26B showed a high specific activity for LBG and konjac glucomannan, with $K_m,\;V_{max}$, and $k_{cat}$ values of 3.80 mg/ml, 91.70 ${\mu}mol$/min/mg protein, and 77.08/s, respectively, being observed when LBG was the substrate. Furthermore, deletion of the CBM6 domain increased the enzyme stability while enabling it to retain 80% and 60% of its initial activity after treatment at $80^{\circ}C$ and $90^{\circ}C$ for 30 min, respectively. This finding will be useful in industrial applications of Man26B, because of the harsh circumstances associated with such processes.

Recombinant Expression of Agarases: Origin, Optimal Condition, Secretory Signal, and Genome Analysis (한천분해효소의 재조합발현 : 기원, 활성조건, 분비신호와 게놈분석 등)

  • Lee, Dong-Geun;Lee, Sang-Hyeon
    • Journal of Life Science
    • /
    • v.30 no.3
    • /
    • pp.304-312
    • /
    • 2020
  • Agarase can be used in the field of basic science, as well as for production of agar-derived high-functional oligosaccharides and bioenergy production using algae. In 2012, we summarized the classification, origin, production, and applications of agar. In this paper, we briefly review the literature on the recombinant expression of agarases from 2012 to the present. Agarase genes originated from 19 genera, including Agarivorans, Flammeovirga, Pseudoalteromonas, Gayadomonas, Catenovulum, Microbulbifer, Cellulophaga, Saccharophagus, Simiduia, and Vibrio. Of the 47 recombinant agarases, there were only two α-agarases, while the rest were β-agarases. All α-agarases produced agarotetraose, while β-agarases yielded many neoagarooligosaccharides ranging from neoagarobiose to neoagarododecaose. The optimum temperature ranged between 25 and 60℃, and the optimum pH ranged from 3.0 to 8.5. There were 14 agarases with an optimum temperature of 50℃ or higher, where agar is in sol state after melting. Artificial mutations, including manipulation of carbohydrate-binding modules (CBM), increased thermostability and simultaneously raised the optimum temperature and activity. Many hosts and secretion signals or riboswitches have been used for recombinant expression. In addition to gene recombination based on the amino acid sequence after agarase purification, recombinant expression of the putative agarase genes after genome sequencing and metagenome-derived agarases have been studied. This study is expected to be actively used in the application fields of agarase and agarase itself.

Carboxy-Terminal Region of a Thermostable CITase from Thermoanaerobacter thermocopriae Has the Ability to Produce Long Isomaltooligosaccharides

  • Jeong, Woo Soo;Kim, Yu-Ri;Hong, Seong-Jin;Choi, Su-Jeong;Choi, Ji-Ho;Park, Shin-Young;Woo, Eui-Jeon;Kim, Young Min;Park, Bo-Ram
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.12
    • /
    • pp.1938-1946
    • /
    • 2019
  • Isomaltooligosaccharides (IMOs) have good prebiotic effects, and long IMOs (LIMOs) with a degree of polymerization (DP) of 7 or above show improved effects. However, they are not yet commercially available, and require costly enzymes and processes for production. The N-terminal region of the thermostable Thermoanaerobacter thermocopriae cycloisomaltooligosaccharide glucanotransferase (TtCITase) shows cyclic isomaltooligosaccharide (CI)-producing activity owing to a catalytic domain of glycoside hydrolase (GH) family 66 and carbohydrate-binding module (CBM) 35. In the present study, we elucidated the activity of the C-terminal region of TtCITase (TtCITase-C; Met740-Phe1,559), including a CBM35-like region and the GH family 15 domain. The domain was successfully cloned, expressed, and purified as a single protein with a molecular mass of 115 kDa. TtCITase-C exhibited optimal activity at 40℃ and pH 5.5, and retained 100% activity at pH 5.5 after 18-h incubation. TtCITase-C synthesized α-1,6 glucosyl products with over seven degrees of polymerization (DP) by an α-1,6 glucosyl transfer reaction from maltopentaose, isomaltopentaose, or commercialized maltodextrins as substrates. These results indicate that TtCITase-C could be used for the production of α-1,6 glucosyl oligosaccharides with over DP7 (LIMOs) in a more cost-effective manner, without requiring cyclodextran.

Isolation and Characterization of an Eosinophilic GH 16 β-Agarase (AgaDL6) from an Agar-Degrading Marine Bacterium Flammeovirga sp. HQM9

  • Liu, Yan;Tian, Xiaoxu;Peng, Chao;Du, Zongjun
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.2
    • /
    • pp.235-243
    • /
    • 2019
  • A special eosinophilic agarase exo-type ${\beta}$-agarase gene, AgaDL6, was cloned from a marine agar-degrading bacterium, Flammeovirga sp. HQM9. The gene comprised 1,383-bp nucleotides encoding a putative agarase AgaDL6 of 461 amino acids with a calculated molecular mass of 52.8 kDa. Sequence analysis revealed a ${\beta}$-agarase domain that belongs to the glycoside hydrolase family (GH) 16 and a carbohydrate-binding module (CBM_4_9) unique to agarases. AgaDL6 was heterologously expressed in Escherichia coli BL21 (DE3). Enzyme activity analysis of the purified protein showed that the optimal temperature and pH of AgaDL6 were $50^{\circ}C$ and 3.0, respectively. AgaDL6 showed thermal stability by retaining more than 98% of activity after incubation for 2 h at $50^{\circ}C$, a feature quite different from other agarases. AgaDL6 also exhibited outstanding acid stability, retaining 100% of activity after incubation for 24 h at pH 2.0 to 5.0, a property distinct from other agarases. This is the first agarase characterized to have such high acid stability. In addition, we observed no obvious stimulation or inhibition of AgaDL6 in the presence of various metal ions and denaturants. AgaDL6 is an exo-type ${\beta}$-1,4 agarase that cleaved agarose into neoagarotetraose and neoagarohexaose as the final products. These characteristics make AgaDL6 a potentially valuable enzyme in the cosmetic, food, and pharmaceutical industries.

Gene Cloning, Purification and Characterization of Xylanase 10A from Paenibacillus woosongensis in Escherichia coli (Paenibacillus woosongensis로부터 대장균에 Xylanase 10A의 유전자 클로닝과 정제 및 특성분석)

  • Yoon, Ki-Hong
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.2
    • /
    • pp.158-166
    • /
    • 2020
  • A gene coding for the xylanase was cloned from Paenibacillus woosongensis, followed by determination of its complete nucleotide sequence. This xylanase gene, designated as xyn10A, consists of 1,446 nucleotides encoding a polypeptide of 481 amino acid residues. Based on the deduced amino acid sequence, Xyn10A was identified to be a modular enzyme composed of a catalytic domain highly homologous to the glycosyl hydrolase family 10 xylanase and a putative carbohydrate-binding module (CBM) in the C-terminus. By using DEAE-sepharose and phenyl-sepharose column chromatography, Xyn10A was purified from the cellfree extract of recombinant Escherichia coli carrying a P. woosongensis xyn10A gene. The N-terminal amino acid sequence of the purified Xyn10A was identified to exactly match the sequence immediately following the signal peptide predicted by the Signal5.0 server. The purified Xyn10A was a truncated protein of 33 kDa, suggesting the deletion of CBM in the C-terminus by intracellular hydrolysis. The purified enzyme had an optimum pH and temperature of 6.0 and 55-60℃, respectively, with the kinetic parameters Vmax and Km of 298.8 U/mg and 2.47 mg/ml, respectively, for oat spelt xylan. The enzyme was more active on arabinoxylan than on oat spelt xylan and birchood xylan with low activity for p-nitrophenyl-β-xylopyranoside. Xylanase activity was significantly inhibited by 5 mM Cu2+, Mn2+, and SDS, and was noticeably enhanced by K+, Ni2+, and Ca2+. The enzyme could hydrolyze xylooligosaccharides larger than xylobiose. The predominant products resulting from xylooligosaccharide hydrolysis were xylobiose and xylose.

Gene Cloning, Expression, and Characterization of a $\beta$-Agarase, AgaB34, from Agarivorans albus YKW-34

  • Fu, Xiao Ting;Pan, Cheol-Ho;Lin, Hong;Kim, Sang-Moo
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.3
    • /
    • pp.257-264
    • /
    • 2009
  • A $\beta$-agarase gene, agaB34, was functionally cloned from the genomic DNA of a marine bacterium, Agarivorans albus YKW-34. The open reading frame of agaB34 consisted of 1,362 bp encoding 453 amino acids. The deduced amino acid sequence, consisting of a typical N-terminal signal peptide followed by a catalytic domain of glycoside hydrolase family 16 (GH-16) and a carbohydrate-binding module (CBM), showed 37-86% identity to those of agarases belonging to family GH-16. The recombinant enzyme (rAgaB34) with a molecular mass of 49 kDa was produced extracellularly using Escherichia coli $DH5{\alpha}$ as a host. The purified rAgaB34 was a $\beta$-agarase yielding neoagarotetraose (NA4) as the main product. It acted on neoagarohexaose to produce NA4 and neoagarobiose, but it could not further degrade NA4. The maximal activity of rAgaB34 was observed at $30^{\circ}C$ and pH 7.0. It was stable over pH 5.0-9.0 and at temperatures up to $50^{\circ}C$. Its specific activity and $k_{cat}/K_m$ value for agarose were 242 U/mg and $1.7{\times}10^6/sM$, respectively. The activity of rAgaB34 was not affected by metal ions commonly existing in seawater. It was resistant to chelating reagents (EDTA, EGTA), reducing reagents (DTT, $\beta$-mercaptoethanol), and denaturing reagents (SDS and urea). The E. coli cell harboring the pUC18-derived agarase expression vector was able to efficiently excrete agarase into the culture medium. Hence, this expression system might be used to express secretory proteins.