Browse > Article
http://dx.doi.org/10.4014/jmb.0804.293

Cloning, Sequencing, and Expression of the Gene Encoding a Multidomain Endo-$\beta$-1,4-Xylanase from Paenibacillus curdlanolyticus B-6, and Characterization of the Recombinant Enzyme  

Waeonukul, Rattiya (School of Bioresources and Technology, King Mongkut's University of Technology Thonburi)
Pason, Patthra (School of Bioresources and Technology, King Mongkut's University of Technology Thonburi)
Kyu, Khin Lay (School of Bioresources and Technology, King Mongkut's University of Technology Thonburi)
Sakka, Kazuo (Graduate School of Bioresources, Mie University)
Kosug, Akihiko (Japan International Research Center for Agricultural Sciences)
Mori, Yutaka (Japan International Research Center for Agricultural Sciences)
Ratanakhanokchai, Khanok (School of Bioresources and Technology, King Mongkut's University of Technology Thonburi)
Publication Information
Journal of Microbiology and Biotechnology / v.19, no.3, 2009 , pp. 277-285 More about this Journal
Abstract
The nucleotide sequence of the Paenibacillus curdlanolyticus B-6 xyn10A gene, encoding a xylanase Xyn10A, consists of 3,828 nucleotides encoding a protein of 1,276 amino acids with a predicted molecular mass of 142,726 Da. Sequence analysis indicated that Xyn10A is a multidomain enzyme comprising nine domains in the following order: three family 22 carbohydrate-binding modules (CBMs), a family 10 catalytic domain of glycosyl hydrolases (xylanase), a family 9 CBM, a glycine-rich region, and three surface layer homology (SLH) domains. Xyn10A was purified from a recombinant Escherichia coli by a single step of affinity purification on cellulose. It could effectively hydrolyze agricultural wastes and pure insoluble xylans, especially low substituted insoluble xylan. The hydrolysis products were a series of short-chain xylooligosaccharides, indicating that the purified enzyme was an endo-$\beta$-1,4-xylanase. Xyn10A bound to various insoluble polysaccharides including Avicel, $\alpha$-cellulose, insoluble birchwood and oat spelt xylans, chitin, and starches, and the cell wall fragments of P. curdlanolyticus B-6, indicating that both the CBM and the SLH domains are fully functioning in the Xyn10A. Removal of the CBMs from Xyn10A strongly reduced the ability of plant cell wall hydrolysis. These results suggested that the CBMs of Xyn10A play an important role in the hydrolysis of plant cell walls.
Keywords
Paenibacillus curdlanolyticus; multidomain xylanase; gene cloning; carbohydrate-binding module; surface layer homology;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
Times Cited By Web Of Science : 7  (Related Records In Web of Science)
연도 인용수 순위
1 Ali, M. K., T. Kimura, K. Sakka, and K. Ohmiya. 2001. The multidomain xylanase Xyn10B as a cellulose-binding protein in Clostridium stercorarium. FEMS Microbiol. Lett. 198: 79-83   DOI   ScienceOn
2 Ali, M. K., H. Hayashi, S. Karita, M. Goto, T. Kimura, K. Sakka, and K. Ohmiya. 2001. Importance of the carbohydrate-binding module of Clostridium stercorarium Xyn10B to xylan hydrolysis. Biosci. Biotechnol. Biochem. 65: 41-47   DOI   ScienceOn
3 Charnock, S. J., D. N. Bolam, J. P. Turkenburg, H. J. Gilbert, L. M. A. Ferreira, G. J. Davies, and C. M. A. Fontes. 2000. The X6 "thermostabilizing” domains of xylanases are carbohydratebinding modules: Structure and biochemistry of the Clostridium thermocellum X6b domain. Biochemistry 39: 5013-5021   DOI   ScienceOn
4 Gilbert, H. J. and G. P. Hazlewood. 1993. Bacterial cellulases and xylanases. J. Gen. Microbiol. 139: 187-194   DOI
5 Henrissat, B. and A. Bairoch. 1996. Updating the sequence-based classification of glycosyl hydrolases. Biochem. J. 316: 695-696   DOI   PUBMED   ScienceOn
6 Irwin, D., E. D. Jung, and D. B. Wilson. 1994. Characterization and sequence of a Thermomonospora fusca xylanase. Appl. Environ. Microbiol. 60: 763-770   PUBMED   ScienceOn
7 Lee, Y.-E., S. E. Lowe, B. Henrissat, and J. G. Zeikus. 1993. Characterization of the active site and thermostability regions of endoxylanase from Thermoanaerobacterium saccharolyticum B6ARI. J. Bacteriol. 175: 5890-5898   DOI   PUBMED
8 Ratanakhanokchai, K., K. L. Kyu, and M. Tanticharoen. 1999. Purification and properties of a xylan-binding endoxylanase from alkaliphilic Bacillus sp. strain K-1. Appl. Environ. Microbiol. 65: 694-697   PUBMED   ScienceOn
9 Tsujibo, H., T. Ohtsuki, T. Iio, I. Yamazaki, K. Miyamoto, M. Sugiyama, and Y. Inamori. 1997. Cloning and sequence analysis of genes encoding xylanases and acetyl xylan esterase from Streptomyces thermoviolaceus OPC-520. Appl. Environ. Microbiol. 63: 661-664   PUBMED   ScienceOn
10 Whistler, R. L. and E. L. Richard. 1970. Hemicellulose in the carbohydrates, pp. 447-469. In W. Pigman and D. Horton (eds.), The Carbohydrates: Chemistry and Biochemistry, 2nd Ed. Academic Press, New York, NY
11 Adelsberger, H., C. Hertel, E. Glawischnig, V. V. Zverlov, and W. H. Schwarz. 2004. Enzyme system of Clostridium stercorarium for hydrolysis of arabinoxylan: Reconstitution of the in vivo system from recombinant enzymes. Microbiology 150: 2257-2266   DOI   ScienceOn
12 Devillard, E., C. Bera-Maillet, H. J. Flint, K. P. Scott, C. J. Newbold, R. J. Wallace, J. P. Jouany, and E. Forano. 2003. Characterization of XYN10B, a modular xylanase from the ruminal protozoan Polyplastron multivesiculatum, with a family 22 carbohydratebinding module that binds to cellulose. Biochem. J. 373: 495-503   DOI   ScienceOn
13 Gill, J., J. E. Rixon, D. N. Bolam, S. McQueen-Mason, P. J. Simpson, M. P. Williamson, G. P. Hazlewood, and H. J. Gilbert. 1999. The type II and X cellulose-binding domains of Pseudomonas xylanase A potentiate catalytic activity against complex substrates by a common mechanism. Biochem. J. 342:473-480   DOI   ScienceOn
14 Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685   DOI   PUBMED   ScienceOn
15 Henrissat, B. and P. Coutinho. [Online] Glycosyl hydrolase families. Architecture et Fonction des Macromol$\acute{e}$ules Biologiques, CNRS, Marseille, France. http://afmb.cnrs-mrs.fr/~pedro/CAZY/ghf.html
16 Nelson, N. 1944. A photometric adaptation of the Somogyi method for the determination of glucose. J. Biol. Chem. 153: 375-380
17 Sun, J. L., K. Sakka, S. Karita, T. Kimura, and K. Ohmiya. 1998. Adsorption of Clostridium stercorarium xylanase A to insoluble xylan and the importance of the CBDs to xylan hydrolysis. J. Ferment. Bioeng. 85: 63-68   DOI   ScienceOn
18 Lee, J.-H. and S. H. Choi. 2006. Xylanase production by Bacillus sp. A-6 isolated from rice bran. J. Microbiol. Biotechnol. 16:1856-1861   ScienceOn
19 Zemnukhova, L. A., S. V. Tomshich, V. A. Mamontova, N. A. Komandrova, G. A. Fedorishcheva, and V. I. Sergienko. 2004. Composition and properties of polysaccharides from rice husk. Russ. J. Appl. Chem. 77: 1883-1887   DOI   ScienceOn
20 Kosugi, A., K. Murashima, Y. Tamaru, and R. H. Doi. 2002. Cellsurface anchoring role of N-terminal surface layer homology domains of Clostridium cellulovorans EngE. J. Bacteriol. 184:884-888   DOI   ScienceOn
21 Black, G. W., J. E. Rixon, J. H. Clarke, G. P. Hazlewood, M. K. Theodorou, P. Morris, and H. J. Gilbert. 1996. Evidence that linker sequences and cellulose-binding domains enhance the activity of hemicellulases against complex substrates. Biochem. J. 319: 515-520   DOI   PUBMED   ScienceOn
22 Kubata, B. K., T. Suzuki, H. Horitsu, K. Kawai, and K. Takamizawa. 1994. Purification and characterization of Aeromonas caviae ME-1 xylanase V, which produces exclusively xylobiose from xylan. Appl. Environ. Microbiol. 60: 531-535   PUBMED   ScienceOn
23 Heo, S., J. Kwak, H.-W. Oh, D.-S. Park, K. S. Bae, D. H. Shin, and H.-Y. Park. 2006. Characterization of an extracellular xylanase in Paenibacillus sp. HY-8 isolated from an herbivorous longicorn beetle. J. Microbiol. Biotechnol. 16: 1753-1759   ScienceOn
24 Lee, Y.-E., S. E. Lowe, and J. G. Zeikus. 1993. Gene cloning, sequencing, and biochemical characterization of endoxylanase from Thermoanaerobacterium saccharolyticum B6A-RI. Appl. Environ. Microbiol. 59: 3134-3137   PUBMED
25 Pason, P., G. H. Chon, K. Ratanakhanokchai, K. L. Kyu, O.-H. Jhee, J. Kang, et al. 2006. Selection of multienzyme complexproducing bacteria under aerobic cultivation. J. Microbiol. Biotechnol. 16: 1269-1275   ScienceOn
26 Meissner, K., D. Wassenberg, and W. Liebl. 2000. The thermostabilizing domain of the modular xylanase Xyn10A of Thermotoga maritima represents a novel type of binding domain with affinity for soluble xylan and mixed-linkage $\beta$-1,3/$\beta$-1,4-glucan. Mol. Microbiol. 36: 898-912   DOI   ScienceOn
27 St. John, F. J., J. D. Rice, and J. F. Preston. 2006. Paenibacillus sp. strain JDR-2 and XynA1: A novel system for methylglucuronoxylan utilization. Appl. Environ. Microbiol. 72: 1496-1506   DOI   ScienceOn
28 Mesnage, St$\acute{e}$phane., T. Fontaine, T$\hat{a}$m Mignot, M. Delepierre, Mich$\grave{e}$le Mock, and Agn$\grave{e}$s. Fouet. 2000. Bacterial SLH domain proteins are non-covalently anchored to the cell surface via a conserved mechanism involving wall polysaccharide pyruvylation. EMBO J. 19: 4473-4484   DOI   ScienceOn
29 Boraston, A. B., A. L. Creagh, M. M. Alam, J. M. Kormos, P. Tomme, C. A. Haynes, R. A. J. Warren, and D. G. Kilburn. 2001. Binding specificity and thermodynamics of a family 9 carbohydratebinding module from Thermotoga maritima xylanase 10A Biochemistry 40: 6240-6247   DOI   ScienceOn
30 Lee, H.-J., D.-J. Shin, N. C. Cho, H. O. Kim, S. Y. Shin, S. Y. Im, H. B. Lee, S. B. Chun, and S. Bai. 2000. Cloning, expression and nucleotide sequences of two xylanase genes from Paenibacillus sp. Biotechnol. Lett. 22: 387-392   DOI   ScienceOn
31 Matuschek, M., K. Sahm, A. Zibat, and H. Bahl. 1996. Characterization of genes from Thermoanaerobacterium thermosulfurigenes EM1 that encode two glycosyl hydrolases with conserved S-layer-like domains. Mol. Gen. Genet. 252:493-496   PUBMED
32 Liu, S.-Y., F. C. Gherardini, M. Matuschek, H. Bahl, and J. Wiegel. 1996. Cloning, sequencing, and expression of the gene encoding a large S-layer-associated endoxylanase from Thermoanaerobacterium sp. strain JW/SL-YS 485 in Escherichia coli. J. Bacteriol. 178: 1539-1547   DOI   PUBMED
33 Lupas, A., H. Enhgelhardt, J. Peters, U. Santarius, S. Volker, and W. Baumeister. 1994. Domain structure of the Acetogenium kivui surface layer revealed by electron crystallography and sequence analysis. J. Bacteriol. 176: 1224-1233   DOI   PUBMED
34 Pason, P., K. L. Kyu, and K. Ratanakhanokchai. 2006. Paenibacillus curdlanolyticus strain B-6 xylanolytic-cellulolytic enzyme system that degrades insoluble polysaccharides. Appl. Environ. Microbiol. 72: 2483-2490   DOI   ScienceOn
35 Millward-Sadler, S. J., D. M. Poole, B. Henrissat, G. P. Hazlewood, J. H. Clarke, and H. J. Gilbert. 1994. Evidence for a general role for high-affinity noncatalytic cellulose binding domains in microbial plant cell wall hydrolases. Mol. Microbiol. 11: 375-382   DOI   ScienceOn
36 Ali, M. K., M. Fukumura, K. Sakano, S. Karita, T. Kimura, K. Sakka, and K. Ohmiya. 1999. Cloning, sequencing, and expression of the gene encoding the Clostridium stercorarium xylanase C in Escherichia coli. Biosci. Biotechnol. Biochem. 63: 1596-1604   DOI   ScienceOn
37 Ito, Y., T. Tomita, N. Roy, A. Nakano, N. Sugawara-Tomita, S. Watanabe, N. Okai, N. Abe, and Y. Kamio. 2003. Cloning, expression, and cell surface localization of Paenibacillus sp. strain W-61 xylanase 5, a multidomain xylanase. Appl. Environ. Microbiol. 69: 6969-6978   DOI   ScienceOn
38 Lowry, O. H., N. J. Rosebrough, A. L. Farr, and R. J. Randall. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265-275   PUBMED
39 Ohmiya, K., K. Sakka, S. Karita, and T. Kimura. 1997. Structure of cellulases and their applications. Biotechnol. Genet. Eng. Rev. 14:365-414   DOI   PUBMED   ScienceOn
40 Okazaki, F., Y. Tamaru, S. Hashikawa, Y.-T. Li, and T. Araki. 2002. Novel carbohydrate-binding module of $\beta$-1,3-xylanase from a marine bacterium, Alcaligenes sp. strain XY-234. J. Bacteriol. 184: 2399-2403   DOI   ScienceOn
41 Moure, Andr$\acute{a}$s., P. Gull$\acute{o}$n, H. Dom$\acute{i}$nguez, and J. C. Paraj$\acute{o}$. 2006. Advances in the manufacture, purification and applications of xylooligosaccharides as food additives and nutraceuticals. Proc. Biochem. 41: 1913-1923   DOI   ScienceOn
42 Sunna, A., M. D. Gibbs, and P. L. Bergquist. 2000. A novel thermostable multidomain β-1,4-xylanase from Caldibacillus cellulovorans and effect of its xylan-binding domain on enzyme activity. Microbiology 146: 2947-2955   DOI   PUBMED   ScienceOn
43 Lee, T. H., P. O. Lim, and Y.-E. Lee. 2007. Cloning, characterization, and expression of xylanase A gene from Paenibacillus sp. DG-22 in Escherichia coli. J. Microbiol. Biotechnol. 17: 29-36   PUBMED   ScienceOn
44 Morris, D. D., M. D. Gibbs, M. Ford, J. Thomas, and P. L. Bergquist. 1999. Family 10 and 11 xylanase genes from Caldicellulosiruptor sp. strain Rt69B.1. Extremophiles 3: 103-111   DOI   ScienceOn
45 Feng, J. X., S. Karita, E. Fujino, T. Fujino, T. Kimura, K. Sakka, and K. Ohmiya. 2000. Cloning, sequencing, and expression of the gene encoding a cell-bound multi-domain xylanase from Clostridium josui, and characterization of the translated product. Biosci. Biotechnol. Biochem. 64: 2614-2624   DOI   ScienceOn
46 Sunna, A. and G. Antranikian. 1997. Xylanolytic enzymes from fungi and bacteria. Crit. Rev. Biotechnol. 17: 39-67   DOI   ScienceOn
47 Araki, R., M. K. Ali, M. Sakka, T. Kimura, K. Sakka, and K. Ohmiya. 2004. Essential role of the family-22 carbohydratebinding modules for β-1,3-1,4-glucanase activity of Clostridium stercorarium Xyn10B. FEBS Lett. 561: 155-158   DOI   PUBMED   ScienceOn