DOI QR코드

DOI QR Code

A Novel pH-Stable, Bifunctional Xylanase Isolated from a Deep-Sea Microorganism, Demequina sp. JK4

  • Meng, Xin (State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University) ;
  • Shao, Zongze (Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State of Oceanic Administration) ;
  • Hong, Yuzhi (College of Plant Science and Technology, Huazhong Agricultural University) ;
  • Lin, Ling (State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University) ;
  • Li, Chanjuan (State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University) ;
  • Liu, Ziduo (State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University)
  • Published : 2009.10.31

Abstract

A genomic library was constructed to clone a xylanase gene (Mxyn10) from Demequina sp. JK4 isolated from a deep sea. Mxyn10 encoded a 471 residue protein with a calculated molecular mass of 49 kDa. This protein showed the highest sequence identity (70%) with the xylanase from Streptomyces lividans. Mxyn10 contains a catalytic domain that belongs to the glycoside hydrolase family 10 (GH10) and a carbohydrate-binding module (CBM) belonging to family 2. The optimum pH and temperature for enzymatic activity were pH 5.5 and $55^{\circ}C$, respectively. Mxyn10 exhibited good pH stability, remaining stable after treatment with buffers ranging from pH 3.5 to 10.0. The protein was not significantly affected by a variety of chemical reagents, including some compounds that usually inhibit the activity of other related enzymes. In addition, Mxyn10 showed activity on cellulose. These properties mark Mxyn10 as a potential enzyme for industrial application and saccharification processes essential for bioethanol production.

Keywords

References

  1. Abou Hachem, M., E. N. Karlsson, E. Bartonek-Rox$\AA$ , S. Raghothama, P. J. Simpson, H. J. Gilbert, M. P. Williamson, and O. Holst. 2000. Carbohydrate-binding modules from a thermostable Rhodothermus marinus xylanase: Cloning, expression and binding studies. Biochem. J. 345: 53-60 https://doi.org/10.1042/0264-6021:3450053
  2. B$\acute{e}$guin, P. 1983. Detection of cellulase activity in polyacrylamide gels using Congo red-stained agar replicas. Anal. Biochem. 131:333-336 https://doi.org/10.1016/0003-2697(83)90178-1
  3. Boraston, A. B., D. Nurizzo, V. Notenboom, .Val$\acute{e}$rie Ducros, D. R. Rose, D. G. Kilburn, and G. J. Davies. 2002. Differential oligosaccharide recognition by evolutionarily-related $\beta$-1,4 and $\beta$-1,3 glucan-binding modules. J. Mol. Biol. 319: 1143-1156 https://doi.org/10.1016/S0022-2836(02)00374-1
  4. Collins, T., C. Gerday, and G. Feller. 2005. Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol. Rev. 29:3-23 https://doi.org/10.1016/j.femsre.2004.06.005
  5. Derewenda, U., L. Swenson, R. Green, Y. Wei, R. Morosoli, F. Shareck, D. Kluepfel, and Z. S. Derewenda. 1994. Crystal structure, at 2.6-${\AA}$ resolution, of the Streptomyces lividans xylanase A, a member of the F family of beta-1,4-D-glycanases. J. Biol. Chem. 269: 20811-20814
  6. Ducros, Valérie., S. J. Charnock, U. Derewenda, Z. S. Derewenda, Z. Dauter, C. Dupont, Shareck, Fran $\c{c}$ois et al. 2000. Substrate specificity in glycoside hydrolase family 10: Structural and kinetic analysis of the Streptomyces lividans xylanase 10A. J. Biol. Chem. 275:23020-23026 https://doi.org/10.1074/jbc.275.30.23020
  7. Fontes, C., G. P. Hazlewood, E. Morag, J. Hall, B. H. Hirst, and H. J. Gilbert. 1995. Evidence for a general role for noncatalytic thermostabilizing domains in xylanases from thermophilic bacteria. Biochem. J. 307: 151-158
  8. Hashimoto, H., Y. Tamai, F. Okazaki, Y. Tamaru, T. Shimizu, T. Araki, and M. Sato. 2005. The first crystal structure of a family 31 carbohydrate-binding module with affinity to beta-1,3-xylan. FEBS Lett. 579: 4324-4328 https://doi.org/10.1016/j.febslet.2005.06.062
  9. Hekmat, O., Y. W. Kim, S. J. Williams, S. M. He, and S. G. Withers. 2005. Active-site peptide 'fingerprinting' of glycosidases in complex mixtures by mass spectrometry: Discovery of a novel retaining $\beta$-1,4-glycanase in Cellulomonas fimi. J. Biol. Chem. 280: 35126-35135 https://doi.org/10.1074/jbc.M508434200
  10. Heo, S., J. Kwak, H. W. Oh, D. S. Park, K. S. Bae, D. H. Shin, and H. Y. Park. 2006. Characterization of an extracellular xylanase in Paenibacillus sp. HY-8 Isolated from an herbivorous longicorn beetle. J. Microbiol. Biotechnol. 16: 1753-1759
  11. Khandeparker, R. and M. T. Numan. 2008. Bifunctional xylanases and their potential use in biotechnology. J. Ind. Microbiol. Biot. 35: 635-644 https://doi.org/10.1007/s10295-008-0342-9
  12. Leskinen, S., A. M$\ddot{a}$ntyl$\ddot{a}$, R. Fagerstr$\ddot{o}$m, J. Vehmaanper$\ddot{a}$, R. Lantto, M. Paloheimo, and P. Suominen. 2005. Thermostable xylanases, Xyn10A and Xyn11A, from the actinomycete Nonomuraea flexuosa: Isolation of the genes and characterization of recombinant Xyn11A polypeptides produced in Trichoderma reesei. Appl. Microbiol. Biotechnol. 67: 495-505 https://doi.org/10.1007/s00253-004-1797-x
  13. Li, N., K. Meng, Y. R. Wang, P. J. Shi, H. Y. Luo, Y. G. Bai, P. L. Yang, and B. Yao. 2008. Cloning, expression, and characterization of a new xylanase with broad temperature adaptability from Streptomyces sp. S9. Appl. Microbiol. Biotechnol. 80: 231-240 https://doi.org/10.1007/s00253-008-1533-z
  14. Lin, L., X. Meng, P. F. Liu, Y. Z. Hong, G. B. Wu, X. L. Huang, et al. 2008. Improved catalytic efficiency of endo-$\beta$-1, 4-glucanase from Bacillus subtilis BME-15 by directed evolution. Appl. Microbiol. Biotechnol. 82: 671-679
  15. Lykidis, A., K. Mavromatis, N. Ivanova, I. Anderson, M. Land, G. DiBartolo, et al. 2007. Genome sequence and analysis of the soil cellulolytic actinomycete Thermobifida fusca YX. J. Bacteriol. 189: 2477-2486 https://doi.org/10.1128/JB.01899-06
  16. Mart$\acute{i}$nez-Trujillo, A., O. P$\acute{e}$rez-Avalos, and T. Ponce-Noyola. 2003. Enzymatic properties of a purified xylanase from mutant pn-120 of Cellulomonas flavigena. Enzyme Microb. Technol. 32: 401-406 https://doi.org/10.1016/S0141-0229(02)00313-7
  17. Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428 https://doi.org/10.1021/ac60147a030
  18. Morosoli, R., J. L. Bertrand, F. Mondou, F. Shareck, and D. Kluepfel. 1986. Purification and properties of a xylanase from Streptomyces lividans. Biochem. J. 239: 587-592
  19. Polizeli, M., A. C. S. Rizzatti, R. Monti, H. F. Terenzi, J. A. Jorge, and D. S. Amorim. 2005. Xylanases from fungi:Properties and industrial applications. Appl. Microbiol. Biotechnol. 67: 577-591 https://doi.org/10.1007/s00253-005-1904-7
  20. Prade, R. A. 1996. Xylanases: From biology to biotechnology. Biotechnol. Genet. Eng. Rev. 13: 101-131 https://doi.org/10.1080/02648725.1996.10647925
  21. Sahu, S. K., A. G. Krishna, and S. N. Gummadi. 2008. Overexpression of recombinant human phospholipid scramblase 1 in E. coli and its purification from inclusion bodies. Biotechnol. Lett. 30: 2131-2137 https://doi.org/10.1007/s10529-008-9797-z
  22. Sakka, K., Y. Kojima, T. Kondo, S. Karita, K. Ohmiya, and K. Shimada. 1993. Nucleotide sequence of the Clostridium stercorarium xynA gene encoding xylanase A: Identification of catalytic and cellulose binding domains. Biosci. Biotechnol. Biochem. 57: 273-277 https://doi.org/10.1271/bbb.57.273
  23. Sambrook, J. and D. W. Russell. 2001. Cold Spring Habor Laboratory Press, Cold Spring Harbor, NY. Molecular Cloning:A Laboratory Manual
  24. Shareck, Fran$\c{c}$ois, C. Roy, M. Yaguchi, R. Morosoli, and D. Kluepfel. 1991. Sequences of 3 genes specifying xylanases in Streptomyces lividans. Gene 107: 75-82 https://doi.org/10.1016/0378-1119(91)90299-Q
  25. Simpson, P. J., H. F. Xie, D. N. Bolam, H. J. Gilbert, and M. P. Williamson. 2000. The structural basis for the ligand specificity of family 2 carbohydrate-binding modules. J. Biol. Chem. 275:41137-41142 https://doi.org/10.1074/jbc.M006948200
  26. Teather, R. M. and P. J. Wood. 1982. Use of Congo red polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl. Environ. Microbiol. 43: 777-780
  27. Thomson, J. A. 1993. Molecular biology of xylan degradation. FEMS Microbiol. Rev. 10: 65-82
  28. Tomme, P., R. A. Warren, and N. R. Gilkes. 1995. Cellulose hydrolysis by bacteria and fungi. Adv. Microb. Physiol. 37: 1-81 https://doi.org/10.1016/S0065-2911(08)60143-5
  29. Wu, S. J., B. Liu, and X. B. Zhang. 2006. Characterization of a recombinant thermostable xylanase from deep-sea thermophilic Geobacillus sp. MT-1 in East Pacific. Appl. Microbiol. Biotechnol. 72: 1210-1216 https://doi.org/10.1007/s00253-006-0416-4
  30. Zhang, H. L., B. Yao, Y. R. Wang, T. Z. Yuan, W. Z. Zhang, N. F. Wu, and Y. L. Fan. 2003. Expression of xylanase gene xyna from Streptomyces olivaceoviridis A1 in Escherichia coli and Pichia pastoris. Sheng Wu Gong Cheng Xue Bao 19: 41-45

Cited by

  1. Regulation of Xylanase Biosynthesis in Bacillus cereus BSA1 vol.167, pp.5, 2012, https://doi.org/10.1007/s12010-011-9523-5
  2. Characterization of EstB, a novel cold-active and organic solvent-tolerant esterase from marine microorganism Alcanivorax dieselolei B-5(T) vol.18, pp.2, 2014, https://doi.org/10.1007/s00792-013-0612-y
  3. Characterization of modular bifunctional processive endoglucanase Cel5 from Hahella chejuensis KCTC 2396 vol.98, pp.10, 2009, https://doi.org/10.1007/s00253-013-5446-0
  4. A high-molecular-weight, alkaline, and thermostable β-1,4-xylanase of a subseafloor Microcella alkaliphila vol.20, pp.4, 2009, https://doi.org/10.1007/s00792-016-0837-7
  5. A novel thermostable GH10 xylanase with activities on a wide variety of cellulosic substrates from a xylanolytic Bacillus strain exhibiting significant synergy with commercial Celluclast 1.5 L in pr vol.12, pp.None, 2009, https://doi.org/10.1186/s13068-019-1389-8
  6. Streptomyces as Potential Synthetic Polymer Degraders: A Systematic Review vol.8, pp.11, 2021, https://doi.org/10.3390/bioengineering8110154