Browse > Article
http://dx.doi.org/10.4014/jmb.0901.017

A Novel pH-Stable, Bifunctional Xylanase Isolated from a Deep-Sea Microorganism, Demequina sp. JK4  

Meng, Xin (State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University)
Shao, Zongze (Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State of Oceanic Administration)
Hong, Yuzhi (College of Plant Science and Technology, Huazhong Agricultural University)
Lin, Ling (State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University)
Li, Chanjuan (State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University)
Liu, Ziduo (State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University)
Publication Information
Journal of Microbiology and Biotechnology / v.19, no.10, 2009 , pp. 1077-1084 More about this Journal
Abstract
A genomic library was constructed to clone a xylanase gene (Mxyn10) from Demequina sp. JK4 isolated from a deep sea. Mxyn10 encoded a 471 residue protein with a calculated molecular mass of 49 kDa. This protein showed the highest sequence identity (70%) with the xylanase from Streptomyces lividans. Mxyn10 contains a catalytic domain that belongs to the glycoside hydrolase family 10 (GH10) and a carbohydrate-binding module (CBM) belonging to family 2. The optimum pH and temperature for enzymatic activity were pH 5.5 and $55^{\circ}C$, respectively. Mxyn10 exhibited good pH stability, remaining stable after treatment with buffers ranging from pH 3.5 to 10.0. The protein was not significantly affected by a variety of chemical reagents, including some compounds that usually inhibit the activity of other related enzymes. In addition, Mxyn10 showed activity on cellulose. These properties mark Mxyn10 as a potential enzyme for industrial application and saccharification processes essential for bioethanol production.
Keywords
Demequina sp. JK4; xylanase; pH-stable; bifunctional; carbohydrate-binding module;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 2  (Related Records In Web of Science)
연도 인용수 순위
1 Ducros, Valérie., S. J. Charnock, U. Derewenda, Z. S. Derewenda, Z. Dauter, C. Dupont, Shareck, Fran $\c{c}$ois et al. 2000. Substrate specificity in glycoside hydrolase family 10: Structural and kinetic analysis of the Streptomyces lividans xylanase 10A. J. Biol. Chem. 275:23020-23026   DOI   ScienceOn
2 Li, N., K. Meng, Y. R. Wang, P. J. Shi, H. Y. Luo, Y. G. Bai, P. L. Yang, and B. Yao. 2008. Cloning, expression, and characterization of a new xylanase with broad temperature adaptability from Streptomyces sp. S9. Appl. Microbiol. Biotechnol. 80: 231-240   DOI   ScienceOn
3 Simpson, P. J., H. F. Xie, D. N. Bolam, H. J. Gilbert, and M. P. Williamson. 2000. The structural basis for the ligand specificity of family 2 carbohydrate-binding modules. J. Biol. Chem. 275:41137-41142   DOI   ScienceOn
4 Thomson, J. A. 1993. Molecular biology of xylan degradation. FEMS Microbiol. Rev. 10: 65-82   PUBMED   ScienceOn
5 Tomme, P., R. A. Warren, and N. R. Gilkes. 1995. Cellulose hydrolysis by bacteria and fungi. Adv. Microb. Physiol. 37: 1-81   DOI   PUBMED
6 Wu, S. J., B. Liu, and X. B. Zhang. 2006. Characterization of a recombinant thermostable xylanase from deep-sea thermophilic Geobacillus sp. MT-1 in East Pacific. Appl. Microbiol. Biotechnol. 72: 1210-1216   DOI   ScienceOn
7 Collins, T., C. Gerday, and G. Feller. 2005. Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol. Rev. 29:3-23   DOI   ScienceOn
8 Hekmat, O., Y. W. Kim, S. J. Williams, S. M. He, and S. G. Withers. 2005. Active-site peptide 'fingerprinting' of glycosidases in complex mixtures by mass spectrometry: Discovery of a novel retaining $\beta$-1,4-glycanase in Cellulomonas fimi. J. Biol. Chem. 280: 35126-35135   DOI   ScienceOn
9 B$\acute{e}$guin, P. 1983. Detection of cellulase activity in polyacrylamide gels using Congo red-stained agar replicas. Anal. Biochem. 131:333-336   DOI   ScienceOn
10 Derewenda, U., L. Swenson, R. Green, Y. Wei, R. Morosoli, F. Shareck, D. Kluepfel, and Z. S. Derewenda. 1994. Crystal structure, at 2.6-${\AA}$ resolution, of the Streptomyces lividans xylanase A, a member of the F family of beta-1,4-D-glycanases. J. Biol. Chem. 269: 20811-20814   PUBMED
11 Heo, S., J. Kwak, H. W. Oh, D. S. Park, K. S. Bae, D. H. Shin, and H. Y. Park. 2006. Characterization of an extracellular xylanase in Paenibacillus sp. HY-8 Isolated from an herbivorous longicorn beetle. J. Microbiol. Biotechnol. 16: 1753-1759   ScienceOn
12 Fontes, C., G. P. Hazlewood, E. Morag, J. Hall, B. H. Hirst, and H. J. Gilbert. 1995. Evidence for a general role for noncatalytic thermostabilizing domains in xylanases from thermophilic bacteria. Biochem. J. 307: 151-158   ScienceOn
13 Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428   DOI
14 Boraston, A. B., D. Nurizzo, V. Notenboom, .Val$\acute{e}$rie Ducros, D. R. Rose, D. G. Kilburn, and G. J. Davies. 2002. Differential oligosaccharide recognition by evolutionarily-related $\beta$-1,4 and $\beta$-1,3 glucan-binding modules. J. Mol. Biol. 319: 1143-1156   DOI   ScienceOn
15 Hashimoto, H., Y. Tamai, F. Okazaki, Y. Tamaru, T. Shimizu, T. Araki, and M. Sato. 2005. The first crystal structure of a family 31 carbohydrate-binding module with affinity to beta-1,3-xylan. FEBS Lett. 579: 4324-4328   DOI   ScienceOn
16 Teather, R. M. and P. J. Wood. 1982. Use of Congo red polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl. Environ. Microbiol. 43: 777-780   PUBMED   ScienceOn
17 Mart$\acute{i}$nez-Trujillo, A., O. P$\acute{e}$rez-Avalos, and T. Ponce-Noyola. 2003. Enzymatic properties of a purified xylanase from mutant pn-120 of Cellulomonas flavigena. Enzyme Microb. Technol. 32: 401-406   DOI   ScienceOn
18 Sahu, S. K., A. G. Krishna, and S. N. Gummadi. 2008. Overexpression of recombinant human phospholipid scramblase 1 in E. coli and its purification from inclusion bodies. Biotechnol. Lett. 30: 2131-2137   DOI   ScienceOn
19 Abou Hachem, M., E. N. Karlsson, E. Bartonek-Rox$\AA$ , S. Raghothama, P. J. Simpson, H. J. Gilbert, M. P. Williamson, and O. Holst. 2000. Carbohydrate-binding modules from a thermostable Rhodothermus marinus xylanase: Cloning, expression and binding studies. Biochem. J. 345: 53-60   DOI   ScienceOn
20 Leskinen, S., A. M$\ddot{a}$ntyl$\ddot{a}$, R. Fagerstr$\ddot{o}$m, J. Vehmaanper$\ddot{a}$, R. Lantto, M. Paloheimo, and P. Suominen. 2005. Thermostable xylanases, Xyn10A and Xyn11A, from the actinomycete Nonomuraea flexuosa: Isolation of the genes and characterization of recombinant Xyn11A polypeptides produced in Trichoderma reesei. Appl. Microbiol. Biotechnol. 67: 495-505   DOI   ScienceOn
21 Khandeparker, R. and M. T. Numan. 2008. Bifunctional xylanases and their potential use in biotechnology. J. Ind. Microbiol. Biot. 35: 635-644   DOI   ScienceOn
22 Sakka, K., Y. Kojima, T. Kondo, S. Karita, K. Ohmiya, and K. Shimada. 1993. Nucleotide sequence of the Clostridium stercorarium xynA gene encoding xylanase A: Identification of catalytic and cellulose binding domains. Biosci. Biotechnol. Biochem. 57: 273-277   DOI   ScienceOn
23 Polizeli, M., A. C. S. Rizzatti, R. Monti, H. F. Terenzi, J. A. Jorge, and D. S. Amorim. 2005. Xylanases from fungi:Properties and industrial applications. Appl. Microbiol. Biotechnol. 67: 577-591   DOI   ScienceOn
24 Prade, R. A. 1996. Xylanases: From biology to biotechnology. Biotechnol. Genet. Eng. Rev. 13: 101-131   DOI   PUBMED   ScienceOn
25 Sambrook, J. and D. W. Russell. 2001. Cold Spring Habor Laboratory Press, Cold Spring Harbor, NY. Molecular Cloning:A Laboratory Manual
26 Zhang, H. L., B. Yao, Y. R. Wang, T. Z. Yuan, W. Z. Zhang, N. F. Wu, and Y. L. Fan. 2003. Expression of xylanase gene xyna from Streptomyces olivaceoviridis A1 in Escherichia coli and Pichia pastoris. Sheng Wu Gong Cheng Xue Bao 19: 41-45   PUBMED
27 Lykidis, A., K. Mavromatis, N. Ivanova, I. Anderson, M. Land, G. DiBartolo, et al. 2007. Genome sequence and analysis of the soil cellulolytic actinomycete Thermobifida fusca YX. J. Bacteriol. 189: 2477-2486   DOI   ScienceOn
28 Morosoli, R., J. L. Bertrand, F. Mondou, F. Shareck, and D. Kluepfel. 1986. Purification and properties of a xylanase from Streptomyces lividans. Biochem. J. 239: 587-592   ScienceOn
29 Shareck, Fran$\c{c}$ois, C. Roy, M. Yaguchi, R. Morosoli, and D. Kluepfel. 1991. Sequences of 3 genes specifying xylanases in Streptomyces lividans. Gene 107: 75-82   DOI   ScienceOn
30 Lin, L., X. Meng, P. F. Liu, Y. Z. Hong, G. B. Wu, X. L. Huang, et al. 2008. Improved catalytic efficiency of endo-$\beta$-1, 4-glucanase from Bacillus subtilis BME-15 by directed evolution. Appl. Microbiol. Biotechnol. 82: 671-679   PUBMED