• Title/Summary/Keyword: capillary number

Search Result 163, Processing Time 0.036 seconds

EARLY IRRADIATION EFFECTS ON THE ULTRASTRUCTURE OF THE CAPILLARY ENDOTHELIAL CELL IN THE RAT SUBMANDIBULAR GLANDS (방사선조사에 따른 백서 악하선내 혈관 내피세포 미세구조의 조기변화)

  • Ryu Jung-Soo;Sohn Jaong-Ick;Baa Yong-Chul;Choi Karp-Shik
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.25 no.1
    • /
    • pp.71-87
    • /
    • 1995
  • The purpose of this study was to investigate the early irradiation changes on the ultrastructure of the capillary endothelial cell in the rat submandibular glands. For the study, 110 Sprague-Dawley strain male rats were singly irradiated to their neck regions with the doses of 2Gy, 5Gy, and 10Gy by 6MV X -irradiation, and sacrificed on the 3 hours, 6 hours, 12 hours, 1 day, 3 days, 7 days, and 14 days after irradiation. The authors observed the histologic and ultrastructural changes of the capillary endothelial cell using the light and electron microscopes. The results were as follows: I. In the light microscopic examination, the capillary dilation was observed on the 6 hours group and the capillary density was slightly increased on the 12 hours group after 2Gy and 5Gy irradiation. And luminal size and capillary density were decreased on the 3 days and the 7 days groups after irradiation, after then, they were recovered. But capillary density was still decreased on the 14 days group after 10Gy irradiation. 2. In the transmission electron microscopic examination, the mild proliferation of cytoplasmic process of the endothelial cell and reduction in luminal size were observed on the 3 hours group after irradiation. After then, endothelial swelling, marked proliferation of cytoplasmic process, thickened basal lamina, and numerous pinocytotic vesicles were observed after the 1 day group after irradiation. Thickened basal lamina and numerous pinocytotic vesicles were still observed until the 7 days group after irradiation. These changes were recovered to normal on the 14 days group after 2Gy and 5Gy irradiation, but not after 10Gy irradiation. 3. In the scanning electron microscopic examination, the dilation of conduits and constriction, and meandering were observed on the 1 day group after 10Gy irradiation. These changes were observed with increased coarseness of the surface of the vascular resin casting on the 3 days group after irradiation. 4. From the above results, endothelial swelling, proliferation of cytoplasmic process, and thickening of the basal lamina appeared before the 6 hours group after irradiation. And these changes may also induce the increase of the capillary number and luminal size, after then, capillary permeability was increased via the increase of the number of pinocytotic vesicles. The changes were observed earlier and more apparent with the increase of the irradiation doses under the dose of 10Gy irradiation.

  • PDF

Soft Plasma Flash X-ray Generator Utilizing a Vacuum Discharge Capillary

  • Sato, Eiichi;Hayasi, Yasuomi;Usuki, Tatsumi;Sato, Koetsu;Takayama, Kazuyoshi;Ido, Hideaki
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.400-403
    • /
    • 2002
  • The fundamental experiments for measuring soft x-ray characteristics from the vacuum capillary are described. These experiments were primarily performed in order to generate line spectra such as x-ray lasers. The generator consists of a high-voltage power supply, a polarity-inversion ignitron pulse generator, a turbo-molecular pump, and a radiation tube with a capillary. A high-voltage condenser of 200 nF in the pulse generator is charged up to 20 kV by the power supply, and the electric charges in the condenser are discharged to the capillary in the tube after closing the ignitron. During the discharge, weakly ionized plasma forms on the inner and outer sides of a capillary. In the present work, the pump evacuates air from the tube with a pressure of about 1 mPa, and a demountable capillary was developed in order to measure x-ray spectra according to changes in the capillary length. In this capillary, the anode (target) and cathode elements can be changed corresponding to the objectives. The capillary diameter is 2.0 mm, and the length is adjusted from 1 to 50 mm. When a capillary with aluminum anode and cathode electrodes was employed, both the cathode voltage and the discharge current almost displayed damped oscillations. The peak values of the voltage and current increased when the charging voltage was increased, and their maximum values were -10.8 kV and 4.7 kA, respectively. The x-ray durations observed by a 1.6 ${\mu}$m aluminum filter were less than 30 ${\mu}$s, and we detected the aluminum characteristic x-ray intensity using a 6.8 ${\mu}$m aluminum filter. In the spectrum measurement, two sets of aluminum and titanium electrodes were employed, and we observed multi-line spectra. The line photon energies seldom varied according to changes in the condenser charging voltage and to changes in the electrode element. In the case where the titanium electrode was employed, the line number decreased with corresponding decreases in the capillary length. Compared with incoherent visible light, these rays from the capillary were diffracted and diffused greatly after passing through two slits.

  • PDF

A Novel Technoque for Characterization of Membranes

  • Webber, Ronald;Jena, Akshaya;Gupta, Krishna
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2001.10a
    • /
    • pp.39-50
    • /
    • 2001
  • The performance of membranes is governed their pore struture. Pore structures of porous materials can be determined by a number of techniques. However, The novel technique, capillary folw porometry has a number of advantages. In this technique, the sample is brought in contact with a liquid that fills the pores in the membrane spontaneously. Gas under pressure is used to force the liquid from the pores and increase gas flow. Gas flow rate measured as a function of gas pressure in wet and dry samples yield data on the largest pore size, the mean flow pore size, flow distribution and permeability. Pore characteristics of a number of membranes were measured using this technique. This technique did not require the use of any toxic material and the pressure employed was low. Capillary flow porometry is a suitable technique for measurement of the pore structure of many membranes.

  • PDF

경사진 고체 표면 위를 내려가는 액적의 미글림 유동

  • 김진호;김호영;강병하;이재헌
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.10
    • /
    • pp.1025-1033
    • /
    • 2001
  • A scaling analysis is provided which predicts the sliding velocity of a liquid drop down an inclined surface. The analysis is based on the balance of the gravitational work rate that drives the drop sliding and the resistances by capillary and viscous forces. The capillary resistance is accounted for via the contact angle hysteresis, which is quantified by measuring the critical inclination causing the drop to start sliding. The sliding of the drop is governed by the rate of the viscous dissipation of the Stokes flow. The analysis result in its limit form for small contact angles is consistent with previous results. In the experiments to verify the analysis results, the measured sliding velocity of various liquid drops are shown to obey the predictions made in this study.

  • PDF

Application of Home-made Capillary Zone Electrophoresis System to the Separation of Organic Molecules (제작된 모세관 전기영동 시스템의 유기물 분석에의 응용)

  • Kong Joo Lee;Gwi Suk Heo
    • Journal of the Korean Chemical Society
    • /
    • v.35 no.3
    • /
    • pp.219-225
    • /
    • 1991
  • Capillary zone electrophoresis (CZE) which is highly efficient separation technique has been domestically established having optimum detection sensitivity. By applying 20∼35 kV of electric potential to the narrow (50 ${\mu}m$ i.d.) capillary tubing filled with running buffer, this technique can quickly (< 20 min) separate the small quantities of sample with high separation efficiency (number of theoretical plates : 200,000∼500,000). Factors affecting the separation efficiency and resolution in CZE were examined by analyzing adenine and catecholamine derivatives.

  • PDF

Flow Characteristics of Neutrally Buoyant Particles in 2-Dimensional Poiseuille Flow through Circular Capillaries

  • Kim, Young-Won;Jin, Song-Wan;Yoo, Jung-Yul
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2006.12a
    • /
    • pp.7-10
    • /
    • 2006
  • An experimental study has been conducted to quantitatively characterize the motion of neutrally buoyant particles in 2-dimensional Poiseuille flow through the micron-sized circular capillaries in the range of Re (Reynolds number) $\approx0.1\sim100$. $A{\mu}-PTV$ (Particle Tracking Velocimetry) system is adopted, which consists of a double-headed Nd:YAG laser, an epi-fluorescence microscope and a cooled CCD camera. Since high shear rate can be induced due to the scale effect even at low Re, it is shown that in micro scale neutrally buoyant particles in Poiseuille flow drift away from the wall and away from the center of the capillary. Consequently, particles accumulate at the equilibrium position of $0.52\sim0.64R$ with R being the radius of the capillary, which is analogous to that of tube flow in macro scale. There is a plateau in equilibrium position at small Re, while equilibrium position starts increasing at $Re\approx30$. The outermost edge of particle cluster is closer to the center of the capillary than that in previous studies due to low Re effect. The present study quantitatively presents characteristics of particle motion in circular capillaries. Furthermore, it is expected to give optimum factors for designing microfluidic systems that are to be used fur plasma separation from the blood.

  • PDF

Flow Visualization of Oscillation Characteristics of Liquid and Vapor Flow in the Oscillating Capillary Tube Heat Pipe

  • Kim, Jong-Soo;Kim, Ju-Won;Jung, Hyun-Seok
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.10
    • /
    • pp.1507-1519
    • /
    • 2003
  • The two-phase flow patterns for both non-loop and loop type oscillating capillary tube heat pipes (OCHPs) were presented in this study. The detailed flow patterns were recorded by a high-speed digital camera for each experimental condition to understand exactly the operation mechanism of the OCHP. The design and operation conditions of the OCHP such as turn number, working fluid, and heat flux were varied. The experimental results showed that the representative flow pattern in the evaporating section of the OCHP was the oscillation of liquid slugs and vapor plugs based on the generation and growth of bubbles by nucleate boiling. As the oscillation of liquid slugs and vapor plugs was very speedy, the flow pattern changed from the capillary slug flow to a pseudo slug flow near the annular flow. The flow of short vapor-liquid slug-train units was the flow pattern in the adiabatic section. In the condensing section, it was the oscillation of liquid slugs and vapor plugs and the circulation of working fluid. The oscillation flow in the loop type OCHP was more active than that in the non-loop type OCHP due to the circulation of working fluid in the OCHP. When the turn number of the OCHP was increased, the oscillation and circulation of working fluid was more active as well as forming the oscillation wave of long liquid slugs and vapor plugs in the OCHP. The oscillation flow of R-142b as the working fluid was more active than that of ethanol and the high efficiency of the heat transfer performance of R -142b was achieved.

Numerical simulation of a single bubble suspension in polyol resin

  • Dongjin Seo;Lim, Yun-Mee;Youn, Jae-Ryoun
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10a
    • /
    • pp.47-48
    • /
    • 2003
  • Dilute bubble suspensions are prepared by introducing carbon dioxide bubbles into polyol resin. The apparent shear viscosity is measured with a wide gap parallel plate rheometer. A numerical simulation for deformation of a single bubble suspended in a Newtonian fluid is conducted by using a finite volume method (FVM) where multigrid algorithms are incorporated. Transient and steady results of bubble deformation were obtained and were in good agreement with experimental results. At high capillary number, viscosity of the suspension increases as the volume fraction increases, while at low capillary number, the viscosity decreases as the volume fraction increases.

  • PDF

A stability analysis of oil film on an adhesion-type oil skimmer (흡착식 유회수기 표면에 부착된 유막의 안정성 해석)

  • 현범수;김장환
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.3 no.2
    • /
    • pp.85-92
    • /
    • 1997
  • To determine an operational condition of an adhesion-type oil skimmer, it is important to estimate the withdrawal rate for a given driving velocity of the skimmer and material properties of the oil. As a theoretical model for this problem the formation of an oil film on a vertically driven flat plate is investigated. The previous steady-state analysis made in the field of coating industry are reviewed. These studies have been made under the assumptions of small Reynolds and capillary number, which is adequate for coating process but not for oil skimming. An alternative analysis based on the linear stability theory is made. Comparisons with the experimental results reveal that the stability analysis gives a correct estimation of the withdrawal rate for high capillary number at which the previous theory losses its validity.

  • PDF

Measurement of Electron Temperature and Number Density and Their Effects on Reactive Species Formation in a DC Underwater Capillary Discharge

  • Ahmed, Muhammad Waqar;Rahman, Md. Shahinur;Choi, Sooseok;Shaislamov, Ulugbek;Yang, Jong-Keun;Suresh, Rai;Lee, Heon-Ju
    • Applied Science and Convergence Technology
    • /
    • v.26 no.5
    • /
    • pp.118-128
    • /
    • 2017
  • The scope of this work is to determine and compare the effect of electron temperature ($T_e$) and number density ($N_e$) on the yield rate and concentration of reactive chemical species ($^{\bullet}OH$, $H_2O_2$ and $O_3$) in an argon, air and oxygen injected negative DC (0-4 kV) capillary discharge with water flow(0.1 L/min). The discharge was created between tungsten pin-to pin electrodes (${\Phi}=0.5mm$) separated by a variable distance (1-2 mm) in a quartz capillary tube (2 mm inner diameter, 4 mm outer diameter), with various gas injection rates (100-800 sccm). Optical emission spectroscopy (OES) of the hydrogen Balmer lines was carried out to investigate the line shapes and intensities as functions of the discharge parameters such as the type of gas, gas injection rate and inter electrode gap distances. The intensity ratio method was used to calculate $T_e$ and Stark broadening of Balmer ${\beta}$ lines was adopted to determine $N_e$. The effects of $T_e$ and $N_e$ on the reactive chemical species formation were evaluated and presented. The enhancement in yield rate of reactive chemical species was revealed at the higher electron temperature, higher gas injection rates, higher discharge power and larger inter-electrode gap. The discharge with oxygen injection was the most effective one for increasing the reactive chemical species concentration. The formation of reactive chemical species was shown more directly related to $T_e$ than $N_e$ in a flowing water gas injected negative DC capillary discharge.