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Abstract

Dilute bubble suspensions are prepared by
introducing carbon dioxide bubbles into polyol
resin. The apparent shear viscosity is measured
with a wide gap parallel plate rheometer. A
numerical s imulation for deformation of a single
bubble suspended in a Newtonian fluid is
conducted by using a finite volume method
(FVM) where multigrid algorithms are
incorporated. Transient and steady results of
bubble deformation were obtained and were in
good agreement with experimental results. At
high capillary number, viscosity of the suspension
increases as the volume fraction increases, while
at low capillary number, the viscosity decreases as
the volume fraction increases.

Introduction

The rheological behavior of bubble suspensions
has been studied intensively because of its
practical significance and complexity of the
phenomena. By adding gaseous bubbles into a
Newtonian fluid, the suspension fluid exhibits
non-Newtonian behaviors, such as elastic effects
and shear- and time-dependent viscosity
(Macosko, 1994).

In this study various suspending fluids were
prepared with different volume fraction and
bubble radii, and the shear viscosity was
measured with a wide-gap parallel plate rheometer.
In addition to the experiment, we performed a
numerical  simulation of single bubble
deformation between two shearing parallel plates
by using a finite volume method with a multigrid
algorithm. Deformed bubble shapes, pressure, and
velocity fields were obtained with respect to time.
The numerical results were compared with
experimental and theoretical results.

Experimental

The suspending fluid used in our experiment is
propylene oxide based polyol that is surfactant
free. Suspensions are prepared by mechanical
mixing after carbon dioxide gas is injected into
polyol. After suspensions are prepared, they are
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transferred to the BROOKFIELD DV-TI+
viscometer with rotating wide-gap parallel plates
and shear viscosity at the imposed shear rate is
measured.

Numerical Modeling

A pressure based finite volume method for
unstructured meshes that includes the SIMPLE
algorithm (Patankar, 1981) was used. Cell-based,
co-located storage is used for all physical
variables. For treating the moving interface, an
explicit high resolution scheme that is similar to
the CICSAM method (Ubbink and Issa, 1999) is
used. The bubble suspension is modeled as two
phases of Newtonian fluids with different
viscosities. In addition, multigrid algorithms are
incorporated into the numerical code to increase
the rate of convergence and reduce the calculation
time compared with equivalent single-grid
schemes.

Computational domain is filled with two different
fluids, suspending fluid and air, and has a moving
interface. Assuming an isothermal incompressible
Newtonian fluid, general governing equations can
be written as follows:
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where p is density, ¢ is time, v is the velocity
vector, p is pressure, & is the viscosity, and fy is
the force due to surface tension.

Surface tension force is formulated with the
continuum surface force (CSF) concept (Brackbill
et al.,, 1993) and given by
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where I' is the surface tenmsion and f is the

fractional volume function.

Results and Discussion

Shearing of a bubble between two parallel plates
is studied numerically. The upper plate and lower
plate move in opposite direction with the same
speed of U/2. Density of fluid and bubble is set to



the same value and the viscosity ratio 4 = 0.01.
For the system of bubble suspension, capillary
number and Reymolds number are defined as
follows
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Here y,, is viscosity of matrix, r is bubble radius,
d is distance between the plates, and U is 0.1 m/s
so that Re is small enough to assume creeping
flow. Periodic boundary condition is applied to
the left and right side of the computation domain.
When the surface tension is large (small Ca), it is
difficult to achieve convergence and obtain
physically meaningful solutions due to the mesh
dependence of the solution. In the case of large
surface tension, small wiggles in the surface result
in large changes in the solutions. Shapes of the
deformed bubble with ¢ = 0.15 at ¢t = B s are
shown in Fig. 1 for different capillary numbers.
As surface tension increases, the bubble resists
deforming from its original spherical shape. In the
case of Ca = 0.01, the bubble shape is almost the
same as the sphere.
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Fig. 1. Shape of the deformed bubble with ¢ =0.15at
t=8s;(a)Ca=10,(b)Ca=1,(c)Ca=0.1, and (d) Ca
=0.0t.

Figure 2 shows the relative viscosities with
respect to the capillary number. The simulation
results are compared with the results from general
equation determined based on experimental data
and the Frankel and Acrivos equation (1970). For
the large capillary number and ¢ = 0.15, the
relative viscosity predicted by the numerical
simulation is about 0.80, but Frankel and Acrivos
equation yields about 0.77. The numerical
simulation is based on a two-dimensional
approach where the bubble is considered as a long
circular cylinder. Furthermore polydispersity of
the bubbles and the interactions between bubbles
are not considered. Therefore numerical results
cannot be compared with experimental results
directly. Despite of these limitations, simulation
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results agree well with the general constitutive
equation in high capillary number.
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Fig. 2. Effects of capillary number on the relative
viscosity when the bubble is slightly deformed.

Conclusions

A numerical simulation was developed and
carried out for large capillary number of unsteady
region. Although numerical simulation has some
restrictions, the numerical results are in good
agreement with the experimental data. At low
capillary number, increasing bubble volume
fraction leads to an increase in viscosity, whereas
at relatively high capillary number, viscosity
decreases as bubble volume fraction increases.
Three dimensional numerical simulation that can
consider interactions between bubbles will be
developed in the future.
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