• Title/Summary/Keyword: cantilever structures

Search Result 343, Processing Time 0.021 seconds

Collapse of steel cantilever roof of tribune induced by snow loads

  • Altunisik, Ahmet C.;Ates, Sevket;Husem, Metin;Genc, Ali F.
    • Steel and Composite Structures
    • /
    • v.23 no.3
    • /
    • pp.273-283
    • /
    • 2017
  • In this paper, it is aimed to present a detail investigation related to structural behavior of laterally unrestrained steel cantilever roof of tribune with slender cross section. The structure is located in Tutak town in $A{\breve{g}}r{{\i}}$ and collapsed on October 25, 2015 at eastern part of Turkey is considered as a case study. This mild sloped roof structure was built from a variable I beam, and supported on steel columns of 5.5 m height covering totally $240m^2$ closed area in plan. The roof of tribune collapsed completely without any indication during first snowfall after construction at midnight a winter day, fortunately before the opening hours. The meteorological records and observations of local persons are combined together to estimate the intensity of snow load in the region and it is compared with the code specified values. Also, the wide/thickness and height/thickness ratios for flange and web are evaluated according to the design codes. Three dimensional finite element model of the existing steel tribune roof is generated considering project drawings and site investigations using commercially available software ANSYS. The displacements, principal stresses and strains along to the cantilever length and column height are given as contour diagrams and graph format. In addition to site investigation, the numerical and analytical works conducted in this study indicate that the unequivocal reasons of the collapse are overloading action of snow load intensity, some mistakes made in the design of steel cantilever beams, insufficient strength and rigidity of the main structural elements, and construction workmanship errors.

The Structural Reinforcing of PCC-Deck with Cantilever (캔틸레버를 갖는 PCC-Deck의 구조보강)

  • Lho, Byeong-Cheol;Kim, Chang-Kyo;Park, Jong-Hyeon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.5
    • /
    • pp.21-30
    • /
    • 2013
  • LB-Deck is one of the widely used member in interior part of girders as a permanent formwork in structures, but it is not easy to apply to the exterior part of girder due to the overturning and excessive deflection. Considering allowable deflection and safety of the exterior part, Precast Concrete Cantilever Deck (PCC-Deck) is proposed with normal LB-Deck in inner part and extended bars of LB-Deck in outer part. Both numerical analyses and experimental tests were compared to check the safety and allowable deflection for 6 types of PCC-Deck, and D-type (with 16 mm top bar, 6 mm lattice bar, 12 mm bottom bar) is suggested as an optimal structural reinforcement to the 28 kN of maximum load and 27.49 mm of final deflection. The load resisting ratio of D-type under working load of 10 kN was about 2.8 times and 77.5% of improvement was observed.

Energy Harvesting Characteristics of Spring Supported Piezoelectric Cantilever Structure (SPCS) (압전 캔틸레버 스프링 구조물(SPCS)의 에너지 하베스팅 특성)

  • Kim, Kyoung-Bum;Kim, Chang-Il;Jeong, Young-Hun;Lee, Young-Jin;Cho, Jeong-Ho;Paik, Jong-Hoo;Nahm, Sahn;Seong, Tae-Hyeon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.10
    • /
    • pp.766-772
    • /
    • 2012
  • Spring supported piezoelectric cantilever structures (SPCS) were fabricated for vibration-based energy harvester application. We selected four elastic springs (A, B, C, and D type) as cantilever's supporter, each elastic spring has a different spring constant (S). The C type of SPCS ($S_C$: 4,649 N/m) showed a extremely low resonance frequency of 81 Hz along with the highest power output of 38.5 mW while the A type of SPCS ($S_A$: 40,629 N/m) didn't show a resonance frequency while. Therefore, it is considered that the lower spring constant lead to a lower resonance frequency of the SPCS. In addition, a tip mass (18 g) at one end of the SPCS could further reduce the resonance frequency without heavy degradation of power output.

Nonlinear vibration analysis of fluid-conveying cantilever graphene platelet reinforced pipe

  • Bashar Mahmood Ali;Mehmet AKKAS;Aybaba HANCERLIOGULLARI;Nasrin Bohlooli
    • Steel and Composite Structures
    • /
    • v.50 no.2
    • /
    • pp.201-216
    • /
    • 2024
  • This paper is motivated by the lack of studies relating to vibration and nonlinear resonance of fluid-conveying cantilever porous GPLR pipes with fractional viscoelastic model resting on nonlinear foundations. A dynamical model of cantilever porous Graphene Platelet Reinforced (GPLR) pipes conveying fluid and resting on nonlinear foundation is proposed, and the vibration, natural frequencies and primary resonant of such system are explored. The pipe body is considered to be composed of GPLR viscoelastic polymeric pipe with porosity in which Halpin-Tsai scheme in conjunction with fractional viscoelastic model is used to govern the construction relation of the nanocomposite pipe. Three different porosity distributions through the pipe thickness are introduced. The harmonic concentrated force is also applied on pipe and excitation frequency is close to the first natural frequency. The governing equation for transverse motion of the pipe is derived by the Hamilton principle and then discretized by the Galerkin procedure. In order to obtain the frequency-response equation, the differential equation is solved with the assumption of small displacement, damping coefficient, and excitation amplitude by the multiple scale method. A parametric sensitivity analysis is carried out to reveal the influence of different parameters, such as nanocomposite pipe properties, fluid velocity and nonlinear viscoelastic foundation coefficients, on the primary resonance and linear natural frequency. Results indicate that the GPLs weight fraction porosity coefficient, fractional derivative order and the retardation time have substantial influences on the dynamic response of the system.

Study on structural damping of aluminium using multi-layered and jointed construction

  • Nanda, B.K.;Behera, A.K.
    • Structural Engineering and Mechanics
    • /
    • v.20 no.6
    • /
    • pp.631-653
    • /
    • 2005
  • In this work, the mechanism of damping and its theoretical evaluation for layered aluminium cantilever structures jointed with a number of equispaced connecting bolts under an equal tightening torque have been considered. Extensive experiments have been conducted on a number of specimens for comparison with numerical results. Intensity of interface pressure, its distribution pattern, dynamic slip ratio and kinematic coefficient of friction at the interfaces, relative spacing of the connecting bolts, frequency and amplitude of excitation are found to play a major role on the damping capacity of such structures. It is established that the damping capacity of structures jointed with connecting bolts can be improved largely with an increase in number of layers maintaining uniform intensity of pressure distribution at the interfaces. Thus the above principle can be utilized in practice for construction of aircraft and aerospace structures effectively in order to improve their damping capacity which is one of the prime considerations for their design.

An Equivalent Model for Seismic Analysis of Structures Connected by a Sky-bridge (Sky-bridge로 연결된 구조물의 지진해석을 위한 등가모델)

  • Yang, Ah-Ram;Kim, Hyun-Su;Lee, Dong-Guen;Ah, Sang-Kyung;Oh, Jung-Keun;Moon, Yeong-Jong
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.203-208
    • /
    • 2008
  • Recently, high-rise building structures connected by a sky-bridge are frequently constructed. To predict accurate dynamic responses of structures connected a sky-bridge, time history analysis is required. Repetitive analyses are required in the design process. If the entire structure model is employed in the repetitive time history analysis, it would take a lot of computational time and engineers' efforts. Therefore, an equivalent model for high-rise building structures connected by a sky-bridge was proposed in this study. The proposed model consists of cantilever having original structure's stiffnesses and masses. Based on the analytical results, it has been shown that the equivalent model can reduce the analysis time and provide similar seismic responses to the original model.

  • PDF

Effective vibration control of multimodal structures with low power requirement

  • Loukil, Thamina;Ichchou, Mohamed;Bareille, Olivier;Haddar, Mohamed
    • Smart Structures and Systems
    • /
    • v.13 no.3
    • /
    • pp.435-451
    • /
    • 2014
  • In this paper, we investigate the vibration control of multimodal structures and present an efficient control law that requires less energy supply than active strategies. This strategy is called modal global semi-active control and is designed to work as effectively as the active control and consume less power which represents its major limitation. The proposed law is based on an energetic management of the optimal law such that the controller follows this latter only if there is sufficient energy which will be extracted directly from the system vibrations itself. The control algorithm is presented and validated for a cantilever beam structure subjected to external perturbations. Comparisons between the proposed law performances and those obtained by independent modal space control (IMSC) and semi-active control schemes are offered.

Full-scale investigation of wind-induced vibrations of a mast-arm traffic signal structure

  • Riedman, Michelle;Sinh, Hung Nguyen;Letchford, Christopher;O'Rourke, Michael
    • Wind and Structures
    • /
    • v.20 no.3
    • /
    • pp.405-422
    • /
    • 2015
  • In previous model- and full-scale studies, high-amplitude vertical vibrations of mast-arm traffic signal structures have been shown to be due to vortex shedding, a phenomenon in which alternatingly shed, low-pressure vortices induce oscillating forces onto the mast-arm causing a cross-wind response. When the frequency of vortices being shed from the mast-arm corresponds to the natural frequency of the structure, a resonant condition is created causing long-lasting, high-amplitude vibrations which may lead to the fatigue failure of these structures. Turbulence in the approach flow is known to affect the cohesiveness of vortex shedding. Results from this full-scale investigation indicate that the surrounding terrain conditions, which affect the turbulence intensity of the wind, greatly influence the likelihood of occurrence of long-lasting, high-amplitude vibrations and also impact whether reduced service life due to fatigue is likely to be of concern.

The Comparison of Stiction Results of Anti-Stiction Methods for Polysilicon Surface Micromachining (다결정실리콘 표면 미세가공 기술을 위한 점착 방지법들의 성능 비교)

  • Lee, Youn-Jae;Han, Seung-Oh;Park, Jung-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.233-241
    • /
    • 2000
  • This paper presents comparative results of various commonly used anti-stiction methods for polysilicon surface micromachining using identical test structures. Four different types of cantilevers - single cantilevers, cantilevers with dimples, cantilevers with anti-stiction tip, cantilevers with plate - with different widths and lengths were employed as test structures. The detachment length of cantilevers was examined depending on the anti-stiction methods and test structure types. After sacrificial layer was removed, evaporation and sublimation drying methods were used in the drying step when takes place the stiction between structure and substrate. Various final rinsing liquids such as methanol, IPA, and DI water were employed to compare anti-stiction results depending on surface tension and rinsing temperature. For sublimation drying method, methanol was used as an intermediate rinsing liquid. Also, the influence of a stress gradient of the polysilicon was investigated by performing the identical anti-stiction experiments on identical test structures with a stress gradient. In conclusion, sublimation drying method showed superior results to various evaporation drying methods and hence it is considered the best method for releasing polysilicon microstructure in polysilicon surface micromachining.

  • PDF

Numerical Evaluation of Fundamental Finite Element Models in Bar and Beam Structures (Bar와 Beam 구조물의 기본적인 유한요소 모델의 수치해석)

  • Ryu, Yong-Hee;Ju, Bu-Seog;Jung, Woo-Young;Limkatanyu, Suchart
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.4 no.1
    • /
    • pp.1-8
    • /
    • 2013
  • The finite element analysis (FEA) is a numerical technique to find solutions of field problems. A field problem is approximated by differential equations or integral expressions. In a finite element, the field quantity is allowed to have a simple spatial variation in terms of linear or polynomial functions. This paper represents a review and an accuracy-study of the finite element method comparing the FEA results with the exact solution. The exact solutions were calculated by solid mechanics and FEA using matrix stiffness method. For this study, simple bar and cantilever models were considered to evaluate four types of basic elements - constant strain triangle (CST), linear strain triangle (LST), bi-linear-rectangle(Q4),and quadratic-rectangle(Q8). The bar model was subjected to uniaxial loading whereas in case of the cantilever model moment loading was used. In the uniaxial loading case, all basic element results of the displacement and stress in x-direction agreed well with the exact solutions. In the moment loading case, the displacement in y-direction using LST and Q8 elements were acceptable compared to the exact solution, but CST and Q4 elements had to be improved by the mesh refinement.