DOI QR코드

DOI QR Code

캔틸레버를 갖는 PCC-Deck의 구조보강

The Structural Reinforcing of PCC-Deck with Cantilever

  • 노병철 (상지대학교 건설시스템공학과) ;
  • 김창교 (상지대학교 토목공학과, 한국종합기술 구조부) ;
  • 박종현 (상지대학교 토목공학과)
  • 투고 : 2013.02.08
  • 심사 : 2013.05.29
  • 발행 : 2013.09.30

초록

본 연구는 현재 내측 거더부에 적용하고 있는 LB-Deck를 캔틸레버부까지 확대 적용하기 위하여 Precast Concrete Cantilever Deck를 제안하고, 제안된 PCC-Deck의 구조적인 안전성과 처짐등 거동특성을 평가하였다. PCC-Deck의 구성은 일반부 LB-Deck와 캔틸레버부의 Deck를 주철근과 격자봉을 연장하여 제작하는 방식으로, 기존 LB-Deck을 사용할 경우 발생하는 전도에 대한 문제를 보완하였다. 수치해석 및 실험 결과 최적의 구조로 제안된 D-Type (상부근 16 mm, 격자봉 6 mm, 하부근 12 mm)의 경우 최대하중 28 kN, 최대처짐 27.49 mm로 나타났으며, 자중을 제외한 하중 10kN에서의 시공하중에 대한 내하하중 비율이 2.8로 가장 좋은 결과를 나타냈다. 이러한 결과는 다른 Type의 PCC-Deck 실험체 대비 77.5%의 개선효과가 있는 것으로 평가되었다.

LB-Deck is one of the widely used member in interior part of girders as a permanent formwork in structures, but it is not easy to apply to the exterior part of girder due to the overturning and excessive deflection. Considering allowable deflection and safety of the exterior part, Precast Concrete Cantilever Deck (PCC-Deck) is proposed with normal LB-Deck in inner part and extended bars of LB-Deck in outer part. Both numerical analyses and experimental tests were compared to check the safety and allowable deflection for 6 types of PCC-Deck, and D-type (with 16 mm top bar, 6 mm lattice bar, 12 mm bottom bar) is suggested as an optimal structural reinforcement to the 28 kN of maximum load and 27.49 mm of final deflection. The load resisting ratio of D-type under working load of 10 kN was about 2.8 times and 77.5% of improvement was observed.

키워드

참고문헌

  1. Berg A. C., Bank L. C., Oliva M. G. and Russell J. S., "Construction and cost analysis of an FRP reinforced concrete bridge deck", Construction and Building Materials, Vol. 20, No. 8, 2006, pp.515-526 (Netherlands). https://doi.org/10.1016/j.conbuildmat.2005.02.007
  2. Choi E. S. and Kim H. S., "Precast Concrete Panel's Behavior for Constructing Bridge Decks", Vol. 25, No. 2, 2005, pp.395-404 (in Korean).
  3. Ehmke F. G., Analysis of a bridge deck built on interstate highway 39/90 with full-depth, precast, prestressed concrete deck panels. Ms.C. Thesis, University of Wisconsin-Madison, 2006 (United States of America).
  4. KCI, Korea Structural Concrete Design Code, 2007.
  5. Kim H. Y. and Jeong Y. J., "Experimental investigation on behaviour of steel-concrete composite bridge slabs with perfobond ribs", Journal of Constructional Steel Research, Vol. 62, No. 5, 2006, pp.463-471 (in Korean). https://doi.org/10.1016/j.jcsr.2005.08.010
  6. Kim M. K., Bridge slab construction method and lattice bar deck-shaped precast concrete plate applied therein. Patent Cooperation Treaty (PCT), WO 2006/049377, 2006 (in Korean).
  7. KTRA, Bridge Design Specification, 2010.
  8. Lho B. C. and CHo G. D., "A Study on the Composite Behavior according to Height Change of Lattice bar in LB-DECK", Journal of the Korea institute for structural maintenance inspection, Vol. 27, No. 2, 2007, pp.193-200 (in Korean).
  9. Lho B. C. and CHo G. D., "A Study on the Structural Behavior of LB-DECK Panel Considering Rebar-Arrangement in Site", Journal of the Korea institute for structural maintenance inspection, Vol. 12, No. 3, 2008, pp.167-174 (in Korean).
  10. Youn S. G., Lee J. H., Cho S. K., Jeong J. D. and Won Y. S., "Punching Shear Strength of Reinforced Concrete Bridge Decks with LB-DECK", Magazine of the Korea Concrete Institute, Vol. 18, No. 1, 2006, pp.390-393 (in Korean).
  11. Zhao L., Karbhari V. M., Hegemier G. A. and Seible F., "Connection of concrete barrier rails to FRP bridge decks", Composites Part B: Engineering, Vol. 35, No. 4, 2004, pp.269-278 (United Kingdom). https://doi.org/10.1016/j.compositesb.2004.02.006