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1. Introduction

The finite element analysis (FEA) has been widely

used and has increased the interest in the accuracy-study

of existing basic elements. This approach is originally

related to the matrix analysis, and although the matrix

analysis can be used for frame structures, FEA can be

used to analyze surface structures. Mathematically, this

method is to find a numerical solution of field problems

using different types of elements for a given loading

condition. Courant (1943) introduced the variational

methods using triangle elements based on piece wise

linear approximations. This was the first appearance of

FE technique. Olson and Bearden (1979) studied about

the convergence using the 18 degree of freedom flat

triangular shell elements of constant strain triangle (CST)

and linear strain triangle (LST). The following year,

Robinson (1980) introduced a four-node quadrilateral

membrane element (Q4) and an eight-node membrane

element (Q8) adding a rotational degree of freedom at

each node associated with a moment. Sze et al. (1992)
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Abstract: The finite element analysis (FEA) is a numerical technique to find solutions of field problems. A field
problem is approximated by differential equations or integral expressions. In a finite element, the field quantity is
allowed to have a simple spatial variation in terms of linear or polynomial functions. This paper represents a review
and an accuracy-study of the finite element method comparing the FEA results with the exact solution. The exact
solutions were calculated by solid mechanics and FEA using matrix stiffness method. For this study, simple bar and
cantilever models were considered to evaluate four types of basic elements - constant strain triangle (CST), linear strain
triangle (LST), bi-linear-rectangle(Q4),and quadratic-rectangle(Q8). The bar model was subjected to uniaxial loading
whereas in case of the cantilever model moment loading was used. In the uniaxial loading case, all basic element
results of the displacement and stress in x-direction agreed well with the exact solutions. In the moment loading case,
the displacement in y-direction using LST and Q8 elements were acceptable compared to the exact solution, but CST
and Q4 elements had to be improved by the mesh refinement.
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studied about the accuracy of quadrilateral elements such

as Q4 and Q8 elements compared to the exact solution.

In their studies, a field quantity is allowed to have only

a simple spatial variation described by linear terms such

as x or y as well as polynomial terms such as x2,xy,

and y2. The actual variation in the region spanned by an

element is certainly more complicated, so finite element

method (FEM) provides an approximate solution, which

means the exact stiffness in elements cannot be

calculated. It shows a fundamental difference between

solid mechanics’ and FEA solutions. As a result, the

evaluation of FEA using basic elements is necessary for

the accurate analysis. This paper examines the accuracy

of FEA using commonly used basic elements CST,

LST, Q4, and Q8 by comparing FEA results with an

exact solution referred to solid mechanics. Practice

models were subjected to uniaxial or moment loadings,

and solid mechanics, matrix stiffness method, and FEM

using basice lements were used to find the solutions for

each case. There view of basic concepts and shape

functions for each approach were conducted to develop

stiffness matrix for the matrix stiffness method and FEM.

The FEA performed in MATLAB, and the FEA results

were compared with the exact solution. The structure

model was improved by the mesh refinement if the

analysis result was not acceptable compared to the exact

solution.

2. Numerical Methods

2.1 Solution of Solid Mechanics

In order to calculate the exact solution for uniaxial

loading case, we used a bar model which was subjected

to uniformly distributed loads as shown in Fig. 1.

Bernoulli Euler beam theory was used in the approach

with the assumptions as: 1) the beam is initially straight,

unstressed and symmetric, and long and slender, 2) plane

sections remain plane and perpendicular to the neutral

axis during bending, 3) Deflections are small, 3) the

cross section needs to have a vertical axis of symmetry.

4) material is linearly elastic, isotropic, and

homogeneous, 5) the beam has no twisting, 5)

proportional limit is not exceeded. Having those

assumptions, the solutions for the displacement and

stress can be calculated by Equations (1) and (2):

  


(1)

   (2)

Where, w is the applied stress; E is the Modulus of

Elasticity. For bending moment loading case, a cantilever

beam is subjected to the bending moment as shown in

Fig. 2. The same assumptions were made as the uniaxial

loading problem for this case. The exact solutions for

the displacement and stress can be calculated by the

solid mechanics’ Eq. (3)(4):

 


(3)

  

 (4)

Where, I is the moment of inertia calculated by ; t is

thickness; h is height; y is the distance from the neutral

axis of the cross section.

Fig. 1 Bar Model

Fig. 2 Cantilever Model

2.2 Solution of Matrix Stiffness Method

The linear bar element is defined as straight prismatic

members in one-dimensional elements for the uniaxial or

lateral deformation as shown in Fig. 3. This element has

a node at each end, and each node has one degree of

freedom (DOF) for translations. In this problem, the

assumptions were made as: 1) the material properties are

not affected by applied forces or moment loading 2)

geometric nonlinearity is not considered, 3) material

remains linearly elastic, isotropic, and homogeneous. The
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shape functions N for the bar elements can be defined

by Eq. (5):

 
 

  


(5)

The strain matrix (B) can be calculated by Eq. (6):

  

  (6)

The stiffness matrix [K] can be calculated by Eq. (7):

 


 (7)

Displacements {} at each node are calculated by the

inversed stiffness matrix times applied forces. The stress

{} can be obtained for each element from Eq.(8):

   (8)

Fig. 3 Linear Bar Element

The linear beam element is characterized as straight

prismatic members in two-dimensional elements for the

lateral translation and rotation deformations as shown in

Fig. 4. This element has a node at each end, and each

node has two DOFs.

The same assumptions were made as the bar element

problem for this case. The shape functions for the

elements are given by Eq. (9):

Fig. 4 Linear Beam Element

  
 


 

   



 


 
 


 

  

 


 


(9)

The strain (B) matrix can be calculated by Eq. (10):

 


 (10)

The stiffness matrix [K] can be calculated by Eq.(11):

 


 (11)

Displacements {} at each node are calculated by the

inversed stiffness matrix times applied forces. The stress

{} can be calculated by the given Eq. (8).

2.3 Solution of Finite Element Method using

Basic Elements

Matrix stiffness method can only be used for framed

structures. Finite element analysis using basic elements

such as constant strain triangle (CST), linear strain

triangle (LST), a four-node quadrilateral membrane

element (Q4), and an eight-node membrane element (Q8)

is originated as an extension of matrix analysis to

surface structures. Finite element method (FEM) is

derived by work-energy principles from assumed

displacement or stress functions, and FEA result

generally produces approximate results. Three conditions

such as the compatibility, equilibrium, and boundary must

be satisfied in this analysis. One of the basic models is

the CST element which is a plane triangle element. In

this model, a field quantity is allowed to have only a

simple spatial variation described by linear terms such as

x or y as shown in Fig. 5.

Fig. 5 Constant Strain Triangle(CST) Element
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In this approximate solution, a linear displacement

fields in stress analysis yields a constant strain field

throughout the element's domain. The shape functions for

this element are given as Eq. (12):

 
     

     

 
     

     

 
     

     

(12)

The strain matrix [B] ×  can be calculated by Eq.

(13):

  














  

 


  




  


 

(13)

Where, i is the number of the shape function. For the

bar and cantilever models in two-dimensional problem,

the plane stress condition was considered because the

thickness of the model was assumed to be small

compared to the other dimensions. In this case, the

equation for plane stress can be given as Eq. (14).

 
 











  
  

  

 
(14)

Where, v is Poisson’s ratio. The approximation of

stiffness matrix [K] is given by Eq. (15):

  


  (15)

Displacements {} at each node can be calculated by

the inversed stiffness matrix times applied forces, and the

stress vector {} is obtained for each element by Eq.

(16):

    (16)

The second basic element is LST element which is a

quadratic triangle element. This element has side nodes

in addition to vertex nodes such that a field quantity is

allowed to have only a spatial variation described by

polynomial terms such as x2,xy, and y2 as shown in

Fig. 6.

Fig. 6 Linear Strain Triangle(LST) Element

The shape functions for the elements are given by Eq.

(17):



























Where,          . The strain

matrix [B] ×  can be calculated by Eq. (13), and the

approximation of stiffness matrix [K] can be calculated

by Eq. (15). The stress vector {} can be obtained for

each element using Eq. (14) and Eq. (16). The third

element is the Q4 element which is a bilinear rectangle

element. This element has a four node plane element

with eight DOFs in which the field quantity is allowed

to have only a simple spatial variation described by

linear terms such as x or y as shown in Fig. 7.

Fig. 7 Four-Node-Quadrilateral Membrane (Q4) Element
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In this approximate solution, a linear displacement

fields in stress analysis yields a constant strain field

throughout the element's domain. The shape functions for

the element are given as Eq. (18):

 

  






 

  




The strain matrix [B]3X8 can be calculated by Eq.

(13), and the approximation of stiffness matrix [K] can

be calculated by Eq. (15). The stress vector {} can be

obtained for each element using Eq. (14) and Eq. (16).

The last element is Q8 element which is a quadratic

rectangle element. This element is obtained by adding

side nodes as LST element such that a field quantity is

allowed to have only a spatial variation described by

polynomial terms such as x , xy, and yas shown in

Fig. 8.

This element is allowed to have curved shapes, and

the shape functions for the element are described by Eq.

(19):

Fig. 8 Eight-Node Membrane (Q8) Element

 



{  }

 


{  }

 



{  }

 


{  }

(19)

 



{}

 


{}

 


{}

 


{}

The same process such as the Q4 element is taken

also for Q8 elements to calculate displacement and stress

for each node. The strain matrix [B]× can be

calculated by Eq. (13), and the approximation of stiffness

matrix [K] can be calculated by Eq. (15). The stress

vector {} can be obtained for each element using Eq.

(14) and Eq. (16).

3. Evaluation of Finite Eelment Analysis

3.1 An Uniaxial Loading Case

In order to evaluate FEA for the uniaxial loading

case, the bar model was used as shown in Fig. 1. This

model has dimensions as h = 0.25m, L = 0.5m, and t =

0.025m. The plane stress condition was considered

because the thickness of the model is to be small

compared to the other dimensions in two-dimensional

analysis. For the material properties, the Modulus of

Elasticity E was used as 150,000 Pa and the Poisson’s

ratio v as 0.3. The uniformly distributed uniaxial load w

was applied as 3000 kN/m2in X-direction as shown in

Figure 1. From the Eq. (1), the displacement at middle

and end locations were calculated as 0.005 m and 0.01

m, respectively. Fig. 9 shows the bar model for the

matrix stiffness method. One DOF is used for the

translation in X-direction. Fig. 10 shows the FE model

using CST elements. Four plane triangle elements were

used for this analysis. The field quantity is allowed to

have linear displacements in X and Y directions. Next,

two quadratic triangle elements were used for FEA using

LST elements as shown in Fig. 11.

Fig. 9 Bar and Beam Model
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Fig. 10 CST Element Model

Fig. 11 LST Element Model

This element is allowed to be an arbitrary shaped

quadrilateral. Fig. 12 shows the FE model using Q4

elements, and two plane bilinear rectangle elements were

used for this analysis. Next, one quadratic rectangle

element was used for FEA using Q8 elements to

calculate displacements and stresses as shown Fig. 13.

Fig. 12 Q4 Element Model

Fig. 13 The Q8 Element Model

Fig. 14 shows displacement results conducted by

MATLAB using the solid mechanics’ equation, matrix

stiffness method, and FEM using basic elements - CST,

LST, Q4, and Q8. There was no difference between

matrix stiffness method and solid mechanics’ results

because matrix stiffness method is the solution to use the

exact stiffness of the member. However, there were

errors using FEA with basic elements. Fig. 15 shows

percentage errors at middle and end locations from the

analyses. Because FEM is derived by work-energy

principles from assumed displacement or stress functions,

there are about 8% error using CST element and less

than 4% error using LST, Q4, and Q8 elements at

middle location compared to the exact result.

Furthermore, Fig. 16 and Fig. 17 show the results of

stresses in x and y-directions. Based on the equilibrium

condition, the stress at end location is the same at the

applied stress 3000 kN/m2.Fig. 16 shows the stress 
using FEA using basic elements agree well with the

exact solution, but analysis results using CST, LST, Q4,

and Q8 elements show about 6% of the stress 
compared to the stress  even though stress in

y-direction is not existed in Fig. 17.

Fig. 14 Displacements () in X-Direction

Fig. 15 Error in Percentage (%) of Displacements in
X-Direction
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Fig. 16 Stress (kN/m
2)

Fig. 17 Stress (kN/m
2)

3.2 A Bending Moment Loading Case

For the evaluation of FEA for bending moment

loading case, the cantilever model was considered for

analysis as shown in Fig. 2. This model is chosen to

have dimensions as h = 0.25 m, L = 0.5 m, and t =

0.025 m. The plane stress condition was considered, and

the material properties were used as E = 384,000 Pa and

v = 0.3. The moment load was applied as M = 1 kN-m

at the end of the beam as shown in Fig. 2. The same

models were used for matrix analysis and FEA using

basic elements. FEA results were compared to an exact

solution referred to solid Mechanics for the uniaxial

loading case. Fig. 18 shows displacement results

conducted by MATLAB using the solid Mechanics’

equation, matrix stiffness method and FEM using basic

elements. From the Eq. (3), the displacement at middle

and end locations were calculated as 0.0025 m and 0.01

m, respectively. Solid Mechanics’ equation and the

matrix analysis yield the same result, but there were

significant errors using FEA with basic elements. Fig. 19

shows percentage errors of displacements in Y-direction

at middle and end locations. There are about 70 % error

using CST element and about 33% error using Q4

element at end location compared to the exact result.

The displacements at the end using CST and Q4

elements were 0.003 m and 0.007 m, respectively. It

should be noted that in FEA, the displacement or stress

functions is assumed. As a result, good shape functions

provide a better solution to anticipate structure behavior.

For the beam bending case, the structure has the

quadratic deformation instead of the linear deformation.

Therefore, an engineer should choose LST and Q8

elements if the quadratic behavior is expected in a

structure, and the linear triangle and bilinear rectangle

elements must be improved by the mesh refinement if

used.

Fig. 18 Displacements () in Y-Direction

Fig. 19 Error in Percentage (%) of Displacements in Y-Direction

3.3 Consideration of An Improved Model

The mesh refinement can improve a structure model

using CST and Q4 elements to have quadratic

deformation in X and Y directions. Finer mesh was used

to evaluate the improvement of analysis results. Having

more degree of freedoms (DOFs) in the model, the

percentage error reduced significantly as shown in Fig.

20. Therefore, to find the accurate solution using FEA,

the engineer should check two conditions; 1) the shape

function of the element has the suitable deformed shape

to anticipate the structure behaviors 2) enough DOFs

were used for analysis to consider appropriate

deformations of the model.
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Fig. 20 Percentage Error fo CST and Q4 Elements

4. Conclusion

In this paper, the principle concept of finite element

analysis (FEA) was reviewed, and FEA using basic

elements such as constant strain triangle (CST), linear

strain triangle (LST), a four-node quadrilateral membrane

element (Q4), and an eight-node membrane element (Q8)

were evaluated by comparing the FEA results with the

exact answer. For the application, practice models were

subjected to uniaxial or bending moment loadings, and

then the solid mechanics, matrix stiffness method, and

FEM using basic elements were used to find the

solutions for each case. In the uniaxial loading case, all

results of displacements and stresses in x-direction agreed

well compared to the exact solution, but the stress in

y-direction were found even though stress in y-direction

was not existed. This error can cause a significant

difference in analysis. In bending moment loading case,

FEA using LST and Q8 elements provided the

acceptable results of displacements in Y-direction, but the

errors were significant when using CST and Q4 elements

compared to the exact answer. The mesh refinement was

conducted for those elements by increasing element

numbers. The percentage error reduced significantly as

finer mesh improved the model to have the quadratic

behavior. In this paper, we examined the accuracy of

FEA using commonly used basic elements - CST, LST,

Q4, and Q8 by comparing FEA results with an exact

solution referred to solid mechanics. FEM is a numerical

technique to find approximate solutions. Therefore, an

engineer must check the shape function of the element

such that the element has the suitable deformed shape or

the enough elements are considered to anticipate the

structure behaviors.
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