• Title/Summary/Keyword: calculation of mechanical variables

검색결과 79건 처리시간 0.027초

수치적 변수들이 배면판을 이용한 고강도 강판의 전자기 성형 해석에 미치는 영향도 분석 (Sensitivity Analysis of Numerical Variables Affecting the Electromagnetic Forming Simulation of a High Strength Steel Sheet Using a Driver Sheet)

  • 박현일;이진우;이영선;김지훈;김대용
    • 소성∙가공
    • /
    • 제28권3호
    • /
    • pp.159-166
    • /
    • 2019
  • Electromagnetic forming (EMF) simulations consider 3-dimensionally coupled electromagnetic-mechanical phenomenon using LS-DYNA, therefore the calculation cost is normally expensive. In this study, a sensitivity analysis in regard to the simulation variables affecting the calculation time was carried out. The EMF experiments were conducted to form an elliptically protruding shape on a high-strength steel sheet, and it was predicted using LS-DYNA simulation. In this particular EMF simulation case, the effect of several simulation variables, viz., element size, contact condition, EM-time step interval, and re-calculation number of the EM matrices, on the shape of elliptical protrusion and the total calculation time was analyzed. As a result, reasonable values of the simulation variables between the simulation precision and calculation time were proposed, and the EMF experiments with respect to the charging voltages were successfully predicted.

프레임 구조물에 대한 선형 내구 보강 기법의 적용 (Application of the Durability Reinforcement Technique on the Frame Structure)

  • 권성훈;유홍희
    • 대한기계학회논문집A
    • /
    • 제33권11호
    • /
    • pp.1341-1346
    • /
    • 2009
  • In this paper, the technique to reinforce the durability performance of structure using the sensitivity information for the frame structure is applied. The fatigue life calculation for the frame structure is performed from the quasi-static and transient analysis and the characteristics of two methods are compared for the fatigue analysis. Then the reinforcement technique is applied. First, some design variables related to the locations of fatigue failure is selected. Then sensitivities of fatigue life at fracture points with respect to the variation of design variables are calculated and the vector composed of gaps between the target life and initial life cycles is calculated. If the number of fatigue fracture points is same as the number of design variables, the variations of the design variables are calculated from the linear algebraic equation. If not, the variations of the design variables are calculated from the optimization formulation with the constraints.

6-3 스튜워트 플랫폼 운동장치의 새로운 기구학 해석방법 (A New Kinematic Analysis of 6-3 Stewart Platform Manipulator)

  • 김낙인;이종원
    • 대한기계학회논문집A
    • /
    • 제25권8호
    • /
    • pp.1206-1212
    • /
    • 2001
  • The kinematic analysis of Stewart platform manipulator(SPM) is carried out in order to reduce the calculation time for its forward kinematic solution when the iterative numerical method is employed. The kinematic equations for three substructures of the 6-3 SPM are newly derived by introducing Denavit-Hartenberg link parameters and using kinematic constraints associated with the SPM and substructure kinematics. It is shown that the forward kinematics can be easily solved from three nonlinear equations with three unknown variables only, leading to a great reduction in calculation time.

Sensitivity analysis based on complex variables in FEM for linear structures

  • Azqandi, Mojtaba Sheikhi;Hassanzadeh, Mahdi;Arjmand, Mohammad
    • Advances in Computational Design
    • /
    • 제4권1호
    • /
    • pp.15-32
    • /
    • 2019
  • One of the efficient and useful tools to achieve the optimal design of structures is employing the sensitivity analysis in the finite element model. In the numerical optimization process, often the semi-analytical method is used for estimation of derivatives of the objective function with respect to design variables. Numerical methods for calculation of sensitivities are susceptible to the step size in design parameters perturbation and this is one of the great disadvantages of these methods. This article uses complex variables method to calculate the sensitivity analysis and combine it with discrete sensitivity analysis. Finally, it provides a new method to obtain the sensitivity analysis for linear structures. The use of complex variables method for sensitivity analysis has several advantages compared to other numerical methods. Implementing the finite element to calculate first derivatives of sensitivity using this method has no complexity and only requires the change in finite element meshing in the imaginary axis. This means that the real value of coordinates does not change. Second, this method has the lower dependency on the step size. In this research, the process of sensitivity analysis calculation using a finite element model based on complex variables is explained for linear problems, and some examples that have known analytical solution are solved. Results obtained by using the presented method in comparison with exact solution and also finite difference method indicate the excellent efficiency of the proposed method, and it can predict the sustainable and accurate results with the several different step sizes, despite low dependence on step size.

2차원 외팔보의 형상변수에 대한 민감도 오차해석 (Sensitivity Error Analyses with Respect to Shape Variables in a Two-Dimensional Cantilever Beam)

  • 박경진
    • 대한기계학회논문집
    • /
    • 제17권1호
    • /
    • pp.11-20
    • /
    • 1993
  • 본 연구에서는 준 해석적 방법에 촛점을 맞추어 전개를 하려 한다. 대개의 최적설계방식이 그렇듯 준 해석적 방법도 치수변수에 관해 응용이 이루어졌는데 그 정 확도에 문제가 나타나지는 않는다. 그러나 최근 형상변수에 대해 응용을 할 경우 오 차가 큰 것이 발견되었다. 물론 치수변수에 관해서도 준 해석적 방법에서 오차가 존 재한다는 보고 있으나 그 절대량이 크지 않으므로 그다지 심각하지 않다고 사료된다. 여기서는 준해석적 방법의 오차의 과정이 수학적으로 전개될 것이며, 설정된 구조물에 대한 수치적 계산결과가 논의 될 것이다. 해석의 대상 구조물로는 엄밀해가 존재하 여 비교분석이 용이한 2차원 외팔보가 선택되었으며, 여러가지 방법과의 비교로서 준 해석적 방법이 논의되고 효과적인 방법선택이 제안될 것이다.

헤링본 미세혼합기의 크리깅 모델을 사용한 최적형상설계 (Shape Optimization of A Micromixer with Herringbone Grooves Using Kriging Model)

  • 아매드 앤사리;김상용
    • 대한기계학회논문집B
    • /
    • 제31권8호
    • /
    • pp.711-717
    • /
    • 2007
  • Shape optimization of a staggered herringbone groove micromixer using three-dimensional Navier-Stokes analysis has been carried using Kriging model. The analysis of the degree of mixing is performed by the calculation of spatial data statistics. The calculation of the variance of the mass fraction at various nodes on a plane in the channel is used to quantify mixing. A numerical optimization technique with Kriging model is applied to optimize the shape of the grooves on a single wall of the channel. Three design variables, namely, the ratio of groove width to groove pitch, the ratio of the groove depth to channel height ratio and the angle of the groove, are selected for optimization. A mixing index is used as the objective function. The results of the optimization show that the mixing is very sensitive to the shape of the groove which can be used in controlling mixing in microdevices.

단축적법의 개선에 의한 축류압축기의 효과적인 성능예측 (Effective Performance Prediction of Axial Flow Compressors Using a Modified Stage-Stacking Method)

  • 송태원;김재환;김동섭;노승탁
    • 대한기계학회논문집B
    • /
    • 제24권8호
    • /
    • pp.1077-1084
    • /
    • 2000
  • In this work, a modified stage-stacking method for the performance prediction of multi-stage axial flow compressors is proposed. The method is based on a simultaneous calculation of all interstage variables (temperature, pressure, flow velocity) instead of the conventional sequential stage-by-stage scheme. The method is also very useful in simulating the effect of changing angles of the inlet guide vane and stator vanes on the compressor operating characteristics. Generalized stage performance curves are used in presenting the performance characteristics of each stage. General assumptions enable determination of flow path data and stage design performance. Performance of various real compressors is predicted and comparison between prediction and field data validates the usefulness of the present method.

디이젤 엔진의 크랭크축 최적설계에 관한 연구 (A Study on Optimization of Crankshaft in Diesel Engine)

  • 조상범;안상호;유형선
    • 한국자동차공학회논문집
    • /
    • 제3권5호
    • /
    • pp.10-16
    • /
    • 1995
  • In this study, the optimum design is carried out upon the crankshaft of in-line 6-cylinder internal combustion diesel engine with the mechanical analysis for the layout design, which is standard calculation whose process contains quadratic curve fitting method and quasi newton method about cost function, design variables and constraint conditions, Without finite element analysis, this process in wich mechanical analysis is performed upon the most critical part in crankshaft gives necessary and satisfied output in layout design and saves time and cost in developing a new diesel engine. In this study, also, the 3-dimensional finite element method is used in confirming the standard calculation for the optimization of crankshaft and the shape optimization in crankweb is obtained.

  • PDF

자기벡터포텐셜을 이용한 3차원 전자력 계산 (Electromagnetic Force Calculation using Magnetic Vector Potentials in 3-D Problems)

  • 양재진;이복용;이병환;이기식
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1994년도 하계학술대회 논문집 A
    • /
    • pp.153-155
    • /
    • 1994
  • Electric machines such as motors which have moving parts are desgined for producing mechanical force or torque. The accurate calculation of electromagnetic force and torque is important in the design these machines, Electromagnetic force calculation method using the results of Finite Element Method(FEM) has been presented variously in 2-D problems. Typically the Maxwell's Stress Tensor method and the method of virtual work are used. In the problems including current source, magnetic vector potentials(MVP) have mostly been used as an unknown variables for field analysis by numerical method; e, g. FEM. This paper, thus, introduces both methods using MVP in 3-D case. To verify the usefulness of presented methods, a solenoid model is chosen and analyzed by 3-D and axisymmetrical FEM. In each case, the calculated force are tabulated for several mesh schemes.

  • PDF

민감도 정보를 이용한 설계 방법 및 소프트웨어의 개발 (A Design Methodology and Software Development with Sensitivity Information)

  • 김용일;이정욱;윤준용;박경진
    • 대한기계학회논문집A
    • /
    • 제27권12호
    • /
    • pp.2092-2100
    • /
    • 2003
  • Sensitivity information has been used for linearization of nonlinear functions in optimization. Basically, sensitivity is a derivative of a function with respect to a design variable. Design sensitivity is repeatedly calculated in optimization. Since sensitivity calculation is extremely expensive, there are studies to directly use the sensitivity in the design process. When a small design change is required, an engineer makes design changes by considering the sensitivity information. Generally, the current process is performed one-by-one for design variables. Methods to exploit the sensitivity information are developed. When a designer wants to change multiple variables with some relationship, the directional derivative can be utilized. In this case, the first derivative can be calculated. Only small design changes can be made from the first derivatives. Orthogonal arrays can be used for moderate changes of multiple variables. Analysis of Variance is carried out to find out the regional influence of variables. A flow is developed for efficient use of the methods. A software system with the flow has been developed. The system can be easily interfaced with existing commercial systems through a file wrapping technique. The sensitivity information is calculated by finite difference method. Various examples are solved to evaluate the proposed algorithm and the software system.