• Title/Summary/Keyword: calcium-binding protein

Search Result 191, Processing Time 0.021 seconds

Localizations of substance P, CGRP and calcium binding proteins in Korean native goat duodenum (한국재래산양 십이지장의 장관신경계통에 분포하는 Substance P, CGRP 및 칼슘결합단백질 반응세포에 대한 면역조직화학적 연구)

  • Lee, In-se;Lee, Heungshik S.;Song, Seung-hoon;Yoon, Sung-tae;Hwang, In-koo;Kang, Tae-cheon;Won, Moo-ho;Seo, Je-hoon
    • Korean Journal of Veterinary Research
    • /
    • v.39 no.3
    • /
    • pp.435-447
    • /
    • 1999
  • The localization of substance P(SP), calcitonin gene-related peptide(CGRP) and three calcium binding proteins, calbindin D-28k(CB), calretinin(CR) and parvalbumin(PA) was immunohistochemically examined in the myenteric and submucous plexuses of Korean native goat duodenum. In the neurons of myenteric and submucous plexuses of duodenum, immunoreactivities of SP, CGRP and CB were confirmed in both nerve cell bodies and fibers. In contrast, CR immunoreactivity was found only in nerve fibers of myenteric plexuses, while PA immunoreactivity was found only in nerve cell bodies of submucous plexuses. In the inner circular muscle layer, dense SP-like immunoreactive fibers were prominent but only a few CGRP-like immunoreactivities were observed. Most of SP- and CGRP-like immunoreactive neurons of both plexuses colocalized with CB. This result showed that SP and CGRP may have a important role for the movement of small intestine. The colocalizations of CB with SP or CGRP in myenteric and submucous plexuses suggest that CB may serve neuromodulatory role for SP- and CGRP-immunoreacted neurons on the movement of intestinal wall.

  • PDF

Hepatitis B virus X protein enhances liver cancer cell migration by regulating calmodulin-associated actin polymerization

  • Kim, Mi-jee;Kim, Jinchul;Im, Jin-su;Kang, Inho;Ahn, Jeong Keun
    • BMB Reports
    • /
    • v.54 no.12
    • /
    • pp.614-619
    • /
    • 2021
  • Hepatitis B virus (HBV) infection is a major cause of hepatocellular carcinoma (HCC), which is a highly aggressive cancer. HBV X protein (HBx), one of four HBV gene products, plays pivotal roles in the development and metastasis of HCC. It has been reported that HBx induces liver cancer cell migration and reorganizes actin cytoskeleton, however the molecular basis for actin cytoskeleton reorganization remains obscure. In this study, we for the first time report that HBx promotes actin polymerization and liver cancer cell migration by regulating calcium modulated protein, calmodulin (CaM). HBx physically interacts with CaM to control the level of phosphorylated cofilin, an actin depolymerizing factor. Mechanistically, HBx interacts with CaM, liberates Hsp90 from its inhibitory partner CaM, and increases the activity of Hsp90, thus activating LIMK1/cofilin pathway. Interestingly, the interaction between HBx and CaM is calcium-dependent and requires the CaM binding motif on HBx. These results indicate that HBx modulates CaM which plays a regulatory role in Hsp90/LIMK1/cofilin pathway of actin reorganization, suggesting a new mechanism of HBV-induced HCC metastasis specifically derived by HBx.

Molecular Cloning of Plasmodium vivax Calcium-Dependent Protein Kinase 4

  • Choi, Kyung-Mi;Kim, Jung-Yeon;Moon, Sung-Ung;Lee, Hyeong-Woo;Sattabongkot, Jetsumon;Na, Byoung-Kuk;Kim, Dae-Won;Suh, Eun-Jung;Kim, Yeon-Joo;Cho, Shin-Hyeong;Lee, Ho-Sa;Rhie, Ho-Gun;Kim, Tong-Soo
    • Parasites, Hosts and Diseases
    • /
    • v.48 no.4
    • /
    • pp.319-324
    • /
    • 2010
  • A family of calcium-dependent protein kinases (CDPKs) is a unique enzyme which plays crucial roles in intracellular calcium signaling in plants, algae, and protozoa. CDPKs of malaria parasites are known to be key regulators for stage-specific cellular responses to calcium, a widespread secondary messenger that controls the progression of the parasite. In our study, we identified a gene encoding Plasmodium vivax CDPK4 (PvCDPK4) and characterized its molecular property and cellular localization. PvCDPK4 was a typical CDPK which had well-conserved N-terminal kinase domain and C-terminal calmodulin-like structure with 4-EF hand motifs for calcium-binding. The recombinant protein of EF hand domain of PvCDPK4 was expressed in Echerichia coli and a 34 kDa product was obtained. Immunofluorescence assay by confocal laser microscopy revealed that the protein was expressed at the mature schizont of P. vivax. The expression of PvCDPK4-EF in schizont suggests that it may participate in the proliferation or egress process in the life cycle of this parasite.

Characterization of Calcium Release Channel (Ryanodine Receptor) in Sarcoplasmic Reticulum of Crustacean Skeletal Muscle (갑각류 골격근의 Sarcoplasmic Reticulum에서 칼슘유리)

  • Seok, Jeong-Ho;Jung, Jung-Koo;Hur, Gang-Min;Lee, Jae-Heun
    • The Korean Journal of Pharmacology
    • /
    • v.30 no.1
    • /
    • pp.125-136
    • /
    • 1994
  • To characterize the SR Ca-release channel protein complex of crustacean, $^{45}Ca-release,\;[^3H]ryanodine$ binding, and immunoblot studies were carried out in the crayfish and/or lobster skeletal sarcoplasmic reticulum. Bmax and affinity of crayfish SR to ryanodine were lower than those of lobster SR. AMP (5mM) increased $[^3H]ryanodine$ binding significantly in both vesicles (P<0.05). $Mg^{2+}$(5mM) or tetracaine(1mM) inhibited $[^3H]ryanodine$ binding significantly in both vesicles (P<0.001), but ruthenium red $(10\;{\mu}M)$ inhibited it moderately. In SDS polyacrylamide gel electrophoretic analysis of crayfish SR vesicles, there was a high molecular weight band that showed similar mobility with Ca-release channel protein of lobster skeletal SR, but more rapid mobility (HMWBr) than that of rabbit skeletal SR (HMWBS). Immunoblot analysis showed that polyclonal Ab to lobster skeletal SR Ca-release channel protein was react with HMWBr of crayfish skeletal SR, but not with that of HMWBs of rabbit skeletal SR. ^{45}Ca-release from crayfish skeletal SR vesicles was increased by the increase of extravesicular calcium from $1{\mu}M$ to 1mM. This Ca-release phenomenon was similar, but more sensitive in the low concentration of $Ca^{2+}$, compared to that from lobster SR vesicles. AMP (5mM) or caffeine (10mM) did not affect to $^{45}Ca-release.\;^{45}Ca-release$ was inhibited slightly ($3{\sim}8%\;by\;Mg^{2+}$) (5mM) or tetracaine (1mM), and moderately (23%) by high concentration of ruthenium red $(300\;{\mu}M)$. From the above results, it is suggested that SR Ca-release channel protein of crustacean has different properties from that of the rabbit, and similar properties between crayfish and lobster in functional and immunological aspects, but Ca-release via crayfish channel may be more sensitive to calcium.

  • PDF

The Regulation of AP-1 DNA Binding Activity by Long-term Nicotine Stimulation in Bovine Adrenal Medullary Chromaffin Cells: Role of Second Messengers

  • Lee, Jin-Koo;Choi, Seong-Soo;Suh, Hong-Won
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.6 no.2
    • /
    • pp.109-112
    • /
    • 2002
  • The signal pathways involved in the regulation of AP-1 DNA binding activity in long-term nicotine stimulated bovine adrenal medullary chromaffin (BAMC) cells have not been well characterized. To understand the involvement of second messengers in the regulation of AP-1 DNA binding activity, the present study was designed to define the time-course for inhibition of nicotine-induced responses by cholinergic antagonists, $Ca^{2+}$ and calmodulin (CaM) antagonists, and calcium/calmodulin-dependent protein kinase (CaMK) II inhibitor using electrophoretic mobility shift assay. Nicotine $(10{\mu}M)$ stimulation increased AP-1 DNA binding activity at 24 hr after treatment. Posttreatment with hexamethonium (1 mM) plus atropine $(1{\mu}M)$ (HA), nimodipine $(1{\mu}M),$ or calmidazolium $(1{\mu}M)$ at 0.5, 3, and 6 hr after the nicotine treatment significantly inhibited the AP-1 DNA binding activity increased by long-term nicotine stimulation. However, posttreatment with HA, nimodipine, or calmidazolium at 9 or 12 hr after the nicotine treatment did not affect the nicotine-induced increase of AP-1 DNA binding activity. The pretreatment of BAMC cells with various concentrations of KN-62 inhibited the increase of AP-1 DNA binding activity induced by nicotine in a concentration-dependent manner. KN-62 $(10{\mu}M)$ posttreatment beginning at 0.5, 3, or 6 hr after the nicotine treatment significantly inhibited the increase of AP-1 DNA binding activity. However, KN-62 posttreatment beginning at 9 or 12 hr after the nicotine treatment did not affect the increase of AP-1 DNA binding activity. This study suggested that stimulation (for at least 6 hr) of nicotinic receptors on BAMC cells was necessary for increase of AP-1 DNA binding activity, and activation of $Ca^{2+},$ CaM, and CaMK II up to 6 hr at least seemed to be required for the increase of nicotine-induced AP-1 DNA binding activity.

The role of fecal calprotectin in pediatric disease

  • Jeong, Su Jin
    • Clinical and Experimental Pediatrics
    • /
    • v.62 no.8
    • /
    • pp.287-291
    • /
    • 2019
  • Fecal calprotectin (FC) is a calcium- and zinc-binding protein of the S100 family, mainly expressed by neutrophils and released during inflammation. FC became an increasingly useful tool both for gastroenterologists and for general practitioners for distinguishing inflammatory bowel disease (IBD) from irritable bowel syndrome. Increasing evidences support the use of this biomarker for diagnosis, follow-up and evaluation of response to therapy of several pediatric gastrointestinal diseases, ranging from IBD to nonspecific colitis and necrotizing enterocolitis. This article summarizes the current literature on the use of FC in clinical practice.

Consensus channelome of dinoflagellates revealed by transcriptomic analysis sheds light on their physiology

  • Pozdnyakov, Ilya;Matantseva, Olga;Skarlato, Sergei
    • ALGAE
    • /
    • v.36 no.4
    • /
    • pp.315-326
    • /
    • 2021
  • Ion channels are membrane protein complexes mediating passive ion flux across the cell membranes. Every organism has a certain set of ion channels that define its physiology. Dinoflagellates are ecologically important microorganisms characterized by effective physiological adaptability, which backs up their massive proliferations that often result in harmful blooms (red tides). In this study, we used a bioinformatics approach to identify homologs of known ion channels that belong to 36 ion channel families. We demonstrated that the versatility of the dinoflagellate physiology is underpinned by a high diversity of ion channels including homologs of animal and plant proteins, as well as channels unique to protists. The analysis of 27 transcriptomes allowed reconstructing a consensus ion channel repertoire (channelome) of dinoflagellates including the members of 31 ion channel families: inwardly-rectifying potassium channels, two-pore domain potassium channels, voltage-gated potassium channels (Kv), tandem Kv, cyclic nucleotide-binding domain-containing channels (CNBD), tandem CNBD, eukaryotic ionotropic glutamate receptors, large-conductance calcium-activated potassium channels, intermediate/small-conductance calcium-activated potassium channels, eukaryotic single-domain voltage-gated cation channels, transient receptor potential channels, two-pore domain calcium channels, four-domain voltage-gated cation channels, cation and anion Cys-loop receptors, small-conductivity mechanosensitive channels, large-conductivity mechanosensitive channels, voltage-gated proton channels, inositole-1,4,5-trisphosphate receptors, slow anion channels, aluminum-activated malate transporters and quick anion channels, mitochondrial calcium uniporters, voltage-dependent anion channels, vesicular chloride channels, ionotropic purinergic receptors, animal volage-insensitive cation channels, channelrhodopsins, bestrophins, voltage-gated chloride channels H+/Cl- exchangers, plant calcium-permeable mechanosensitive channels, and trimeric intracellular cation channels. Overall, dinoflagellates represent cells able to respond to physical and chemical stimuli utilizing a wide range of G-protein coupled receptors- and Ca2+-dependent signaling pathways. The applied approach not only shed light on the ion channel set in dinoflagellates, but also provided the information on possible molecular mechanisms underlying vital cellular processes dependent on the ion transport.

Co-expression of a novel ankyrin-containing protein, rSIAP, can modulate gating kinetics of large-conductance calcium-activated potassium channel from rat brain.

  • Lim, Hyun-Ho;Park, Chul-Seung
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2003.06a
    • /
    • pp.45-45
    • /
    • 2003
  • We isolated a novel ankyrin-repeat containing protein, rSIAP (rSlo Interacting Ankyrin-repeat Protein), as an interacting protein to the cytosolic domain of the alpha-subunit of rat large-conductance Ca$\^$2+/-activated K$\^$+/ channel (rSlo) by yeast two-hybrid screening. Affinity pull-down assay showed the direct and specific interaction between rSIAP and rSlo domain. The channel-binding proteins can be classified into several categories according to their functional effects on the channel proteins, i.e. signaling adaptors, scaffolding net, molecular tuners, molecular chaperones, etc. To obtain initial clues on its functional roles, we investigated the cellular localization of rSIAP using immunofluorescent staining. The results showed the possible co-localization of rSlo and rSIAP protein near the plasma membrane, when co-expressed in CHO cells. We then investigated the functional effects of rSIAP on the rSlo channel using electrophysiological means. The co-expression of rSIAP accelerated the activation of rSlo channel. These effects were initiated at the micromolar [Ca$\^$2+/]$\_$i/ and gradually increased as [Ca$\^$2+/]$\_$i/ raised. Interestingly, rSIAP decreased the inactivation kinetics of rSlo channel at micromolar [Ca$\^$2+/]$\_$i/, while the rate was accelerated at sub-micromolar [Ca$\^$2+/]$\_$i/. These results suggest that rSIAP may modulate the activity of native BK$\_$Ca/ channel by altering its gating kinetics depending on [Ca$\^$2+/]$\_$i/. To localize critical regions involved in protein-protein interaction between rSlo and rSIAP, a series of sub-domain constructs were generated. We are currently investigating sub-domain interaction using both of yeast two-hybrid method and in vitro binding assay.

  • PDF

The Effect of Tumbling Time on the Quality and Binding Ability of Restructured Beef M. Pectoralis profundus with Alginate Binder

  • Moon, S.S.;Yang, H.S.;Park, G.B.;Joo, S.T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.3
    • /
    • pp.418-423
    • /
    • 2007
  • Meats with alginate binders including sodium alginate, glucono-delta-lactone and calcium carbonate were tested in restructured steaks made from M. pectoralis profundus of beef steers in terms of meat quality and binding ability by tumbling time. The treatment with 25 min tumbling time was significantly lower (p<0.05) for crude protein than 5 and 15 min, while higher (p<0.05) for moisture content. This corresponded with sensory panel juiciness ratings, which showed the treatment for longer tumbling times to be significantly juicier (p<0.05) than that for a shorter time. Cooking loss decreased (p<0.05) linearly with an increased tumbling time, and Kramer shear force also significant decreased (p<0.05) with tumbling time. This corresponded with sensory panel tenderness ratings, which showed that the treatment for longer tumbling times was more tender (p<0.05). The texture results indicated that longer tumbling time had lower (p<0.05) hardness and chewiness values. Sensory panels ranked binding ability in the order 5 min, 15 min and 25 min from best to worst, and the overall acceptability for slices from roasts of treatments for 5 and 15 min were rated by the sensory panelists as moderate to very acceptable, but those for 25 min were rated as fair to moderate.