• Title/Summary/Keyword: calcined gypsum

Search Result 11, Processing Time 0.027 seconds

Enhancement effect of phosphate and silicate on water defluoridation by calcined gypsum

  • Al-Rawajfeh, Aiman Eid;Alrawashdeh, Albara I.;Aldawdeyah, Asma;Hassan, Shorouq;Qarqouda, Ruba
    • Advances in environmental research
    • /
    • v.2 no.1
    • /
    • pp.35-49
    • /
    • 2013
  • Research work on removal of fluoride from water, referred to as water defluoridation, has resulted into the development of a number of technologies over the years but they suffer from either cost or efficiency drawbacks. In this work, enhancement effects of phosphate and silicate on defluoridation of water by low-cost Plaster of Paris (calcined gypsum) were studied. To our knowledge, the influence of silicate on defluoridation was not reported. It was claimed, that the presence of some ions in the treated water samples, was decreasing the fluoride removal since these ions compete the fluoride ions on occupying the available adsorption sites, however, phosphate and silicate ions, from its sodium slats, have enhanced the fluoride % removal, hence, precipitation of calcium-fluoro compounds of these ions can be suggested. Percentage removal of $F^-$ by neat Plaster is 48%, the electrical conductance (EC) curve shows the typical curve of Plaster setting which begins at 20 min and finished at 30 min. The addition of phosphate and silicate ions enhances the removal of fluoride to high extent > 90%. Thermodynamics parameters showed spontaneous fluoride removal by neat Plaster and Plaster-silicate system. The percentage removal with time showed second-order reaction kinetics.

Hydration in the System of Anhydrite II-Blastfurnace Slag (무수석고-고로슬래그계의 수화반응)

  • 송종택;고상열;노재성
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.8
    • /
    • pp.861-869
    • /
    • 1997
  • In order to investigate the reaction in the system of anhydrite II-blast furnace slag, the paste hydration which made up with a liquid/solid ratio of 0.45 for 1, 3, 7, 14, 28days by the addition of accelerators to 10~30wt.% slag with natural gypsum calcined for 1hour at 500/$700^{\circ}C$ was studied by combined water determination, XRD, DTA, DSC and SEM. As a result of this experiment, it was found that hydration rate was faster in the system calcined at 50$0^{\circ}C$. Therefore the anhydrite was converted to calcium sulfate dihydrate in the hydration for 1day but the slag was not almost reacted. For the gypsum calcined at $700^{\circ}C$, the hydraton rate in the system of K2SO4 addition was faster than others in the earier period, but the activated effect of the system of Al2(SO4)3 addition was regarded as the highest over 3days. As the amount of slag was increased, they dydration rate was delayed and ettringite was observed in the case of K2SO4 system. However both Al2(SO4)3 and AlK(SO4)2 systems showed calcium sulfate dhydrate only as hydrated products.

  • PDF

A Study on Hydration of Slag-Gypsum System (슬래그-석고계 수화반응에 대한 기초 연구)

  • 지정식;최상흘
    • Journal of the Korean Ceramic Society
    • /
    • v.15 no.4
    • /
    • pp.205-212
    • /
    • 1978
  • The hydration reaction of the slag-gypsum system was studied by X-ray diffraction, differential thermal analysis, optical icroscopic observation, and measurement of heat liberation of hydration. 1. Domestic granulated slag was almost noncrystalized state, and its mineral compositions calculated were 46.53% of gehlenite, 28.14% of akermanite, and 19.04% of wollastonite. 2. The slag quenched with water at relatively high temperature had better reactivity. 3. The production of ettringite, CSH gel and AH3 gel were stimulated by effect of $Ca(OH)_2$, $Mg(OH)_2$ and calcined dolomite as activators, and the strength of hardened body would be developed by forming compacted microstructure.

  • PDF

Investigation on the Ratio and Type of Gypsum for Early Strength Improvement of Blast Furnace Slag Powder (고로슬래그 미분말의 초기강도 향상을 위한 석고 종류 및 첨가량 검토)

  • Jeong, Yong;Yoo, Jung-Hoon;Shin, Jae-Kyung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.4
    • /
    • pp.106-113
    • /
    • 2010
  • We were tried to draw a conclusions related to additive amount of gypsum in blast furnace slag in the study. In the result, fluidity of concrete decreased with an increase of gypsum and was not satisfied with KS standard in the cases of natural gypsum and limestone sludge more than 2.6% addition. Early compressive strength of concrete containing desulfurized gypsum, fluosilicic acid gypsum and phosphoric acid gypsum were improved respectively but calcined lime sludge and lime powder were not influenced on strength. If available, additive gypsum should be managed less than 2.0% owing to low fluidity. In low temperature, fluosilicic acid gypsum was to advantages on the fluidity while desulfurized gypsum was in high temperature. There also are conclusions that additive gypsum was to be 2.6% in winter and in summer; it's to be fewer than 2.6%.

  • PDF

Activation Property of Blast Furnace Slag by Calcined Alunite (하소(?燒) 명반석(明礬石)에 의(依)한 고로수쇄(高爐水碎)슬래그의 활성화(活性化) 특성(特性))

  • Kim, Hyung-Seok;Jo, Young-Do;Ahn, Ji-Whan;Kimura, Kunio;Han, Choon
    • Resources Recycling
    • /
    • v.15 no.4 s.72
    • /
    • pp.27-35
    • /
    • 2006
  • In order to use alunite as an activator of blast furnace slag, we studied the hydration characteristics of the calcined alunite and the ground blast furnace slag. The alunite calcined at $650{\cire}C$ consists of KAl($KAl(SO_{4})_{2}$ and $Al_{2}O_{3}$. The calcined alunite reacts with $Ca(OH)_{2}$ and gypsum to form etrringite ($3CaO{\cdot}Al_{2}O_{3}{\cdot}3CaSO_{4}{\cdot}32H_{2}O$) as fellows:$2KAl(SO_{4})_{2}+2Al_{2}O_{3}+13Ca(OH)_{2}+5CaSO_{4}{\cdot}2H_{2}O+73H_{2}O{\rightarrow}3(3CaO{\cdot}Al_{2}O_{3}{\cdot}3CaSO_{4}{\cdot}32H_{2}O)+2KOH$. The $SO_{4}^{2-}$ ions from calcined alunite reacts with CaO in blast furnace slag to from gypsum, which reacts with CaO and $Al_{2}O_{3}$ to from ettringite in calcined alunite-blast furnace slag system. Therefore blast furnace slag can be activated by calcined alunite.

Dehydration Reaction of Phosphogypsum in a Fluidized Bed Reactor (유동화 반응조에서의 인산석고의 탈수반응에 관한 연구)

  • Il Hyun Park;Shin Hwan Ihn;Youn Soo Sohn
    • Journal of the Korean Chemical Society
    • /
    • v.24 no.4
    • /
    • pp.329-336
    • /
    • 1980
  • A domestic phosphogypsum was calcined in a batch type fluidized bed reactor at various reaction temperatures ranging 90∼180$^{\circ}$ without and with an alkaline additive amounting up to 5% of gypsum, and physical properties of the resultant products were compared following their characterization by X-ray diffraction pattern and DTA. It has been found that dehydration reactions were uniformly carried out in the fluidized bed reactor and only hemihydrate was obtained at 90$^{\circ}$ whereas at higher temperatures dehydration reaction progressed further. When gypsum was charged to the reactor preheated at over 140$^{\circ}$, a considerable degree of dehydration occurred before the reactant reached the initially set reactor temperature and in particular, at over 160$^{\circ}$ most of dehydration reaction was performed prior to the present reactor temperature. However, it has been found that gypsum mostly transforms into hemihydrate around the reactant temperature of 140$^{\circ}$ while transformation into anhydrite mostly occurs around $160^{\circ}C.$ When calcium hydroxide was added to gypsum in the reactor, the optimum physical properties of the calcined product were obtained at the weight ratio of $Ca(OH_2)/P_2O_5$ = 3.2.

  • PDF

Evaluation of SO2 Absorption Efficiency for Calcined Oyster Shell Slurry Using a Simulated Spray Type-flue Gas Desulfurization (FGD) System: A Comparative Study with Limestone Slurry (모사 Spray Type 배연탈황설비를 이용한 소성패각 슬러리의 SO2 흡수능 평가: 석회석과의 비교연구)

  • Kim, Seok-Hwi;Hong, Bum-Uh;Lee, Jin-Won;Cha, Wang-Seok;Kim, Kangjoo;Moon, Bo-Kyung
    • Economic and Environmental Geology
    • /
    • v.52 no.2
    • /
    • pp.119-128
    • /
    • 2019
  • About 300,000 tones of oyster shell are annually produced in Korea and, thus, a massive recycling plan is required. Many desulfurizing studies using oyster shells with chemical composition of $CaCO_3$ have been performed so far; however, most of them have focused on dry desulfurization. This study investigates the possibility of using oyster shells for wet desulfurization after calcination. For this, a simulated wet desulfurization facility of spray type was devised and compared the SOx-stripping characteristics of calcined oyster shell with those of limestone. The calcined oyster shell slurry indicate a better desulfurizability than the slurries of raw shell or limestone because the oyster shell transformed to a more reactive phase ($Ca(OH)_2$) by the calcination and hydration. Because of this reason, when the calcined oyster shell slurries were used, the reaction residue showed the higher gypsum ($CaSO_4{\cdot}2H_2O$) contents than any other cases. In the continuous desulfurization experiments, calcined oyster shell slurry showed a wider pH variation than limestone or raw oyster shell slurries, another clear indication of high reactivity of calcined oyster shells for $SO_2$ absorption. Our study also shows that the efficiency of wet desulfurization can be improved by the use of calcined oyster shells.

Crystal growth of gypsum by neutralization reaction of waste sulphuric acid using sludge and dust in Pohang Iron & Steel plant (포항제철(주) 슬러지와 Dust를 이용한 폐황산 중화반응에서 얻어진 석고의 결정성장연구)

  • Ji whan Ahn;Ka yeon Kim;Hwan Kim;Sang bop Lee;Eu dug Hwang
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.7 no.4
    • /
    • pp.673-680
    • /
    • 1997
  • NaOH, $Na_2CO_3, CaO, Ca(OH)_2$ and $CaCO_3$ are widely used counteractives for neoutralizing the waste sulphuric acid produced during the metal surface treatment process and/or the metal refining process. To reduce the tremendous expenses for the neutralization treatment of the waste sulphuric acid, the sludge from calcination plant and the stainless refining dust in POSCO (Pohang Iron & Steel co. Ltd.) was utilized. For the sludge, it will be effective to use calcined and then hydrated sludge in strong acid region (pH<2) and to use the sludge itself in weak acid region (pH>2), The gypsum, the by-product of this treatment, was tested to fit the industrial standard of gypsum, so it is expected that it will solve the lack of gypsum supply. For the stainless refining dust, the phase and the morphology of produced gypsum from waste suiphuric acid neutralization was compared with those from pure sulphuric acid. Because of high reactivity and reaction temperature, $CaSO_4$ non-hydrate was obtained in pure sulphuric acid. But $CaSO_4$ dihydrate was obtained in waste sulphuric acid. It is also judged to be a good material for a counteractive of the waste sulphuric acid.

  • PDF

The Experimental Study on The Compressive Strength of Concrete Using High Quality Recycled Fine Aggregate Produced by Sulphuric Water and Low Speed Wet Abrasional (황산수와 저속습식마쇄기로 생산된 고품질 순환 잔골재의 콘크리트 압축강도에 관한 실험적 연구)

  • Choi, Duck-Jin;Lee, Dae-Guen;Kim, Ha-Suk;Kawk, Eun-Gu;Kang, Chul;Kim, Jin-Man
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.385-388
    • /
    • 2008
  • Recycled fine aggregate has low quality because it contains large amount of old mortar. So, its usage is limited to a lower value-add, such as the roadbed material etc. Also, alkaline water occurred from treatment process of the waste concrete is becoming the cause of environmental problem. Accordingly, this study is to develop on the high quality recycled fine aggregate produced by low speed wet abraser using sulphuric. We investigated the properties of compressive strength of the mortar which was manufactured using recycled fine aggregate containing calcined gypsum produced by earlier mentioned process. Test results indicate that concrete using recycled fine aggregate containing calcined gypsum is higher compressive strength than concrete using other sands.

  • PDF

The Experimental Study on The Compressive Strength of Mortar Using High Quality Recycled Fine Aggregate Produced by Sulphuric Water and Low Speed Wet Abraser (황산수와 저속습식마쇄기로 생산된 고품질 순환 잔골재의 모르타르 압축강도에 관한 실험적 연구)

  • Choi, Duck-Jin;Lee, Dae-Guen;Han, Sang-Il;Kim, Ha-Suk;Jun, Myong-Hun;Kim, Jin-Man
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.485-488
    • /
    • 2008
  • Recycled fine aggregate has low quality because it contains large amount of old mortar. So, its usage is limited to a lower value-add, such as the roadbed material etc. Also, alkaline water occurred from treatment process of the waste concrete is becoming the cause of environmental problem. Accordingly, this study is to develop on the high quality recycled fine aggregate produced by low speed wet abraser using sulphuric. We investigated the properties of compressive strength of the mortar which was manufactured using recycled fine aggregate containing calcined gypsum produced by earlier mentioned process. Test results indicate that mortar using recycled fine aggregate containing calcined gypsum has lowest compressive strength. It seems that low compressive strength is closely associated with the expansion of the specimen by excessive formation of ettringite.

  • PDF