• Title/Summary/Keyword: cable tension

Search Result 304, Processing Time 0.024 seconds

The Dynamic Analysis of Cable Dome Structures (케이블 돔의 구조물의 동적 비선형 해석)

  • Seo, Jun-Ho;Han, Sang-Eul;Lee, Sang-Ju
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2004.05a
    • /
    • pp.113-122
    • /
    • 2004
  • Cable domes deform very largely because of the characteristics of flexible hybrid system and pre-tension, and include geometrical non-linearity in those structural behavior. Especially wind load is more dominant than seismic load, because cable domes are flexible structures whose bending stiffness is very small and self-weight is very light. Therefore, in this paper, the Modified Stiffly Stable Method is applied to analyze the nonlinear dynamic behavior of cable domes and compared these results with ones of the $Newmark-{\beta}$ Method which is generally used. The Seoul Olympic Gymnastic Arena is taken as an numerical example and three kinds of models with giving each different intensity of pre-tension are selected. And dynamic nonlinear behavior of cable domes are analyzed by artificial spectrum of wind velocity wave which is similar to actual wind loads.

  • PDF

A Study on the Unstable Characteristics of Tensegrity Cable Domes According to Loading Conditions (하중조건에 따른 Tensegrity 케이블 돔의 불안정 거동 특성에 관한 연구)

  • Baek, In-Seong;Jeong, Eul-Seok;Kim, Seung-Deog
    • Proceeding of KASS Symposium
    • /
    • 2005.05a
    • /
    • pp.161-166
    • /
    • 2005
  • In spatial structures with large spaces, one important issue in structures with large spaces is how to carry the weight of the roof. A tensegrity cable dome structure is a kind of soft structural system using the tension cable and compression column as a main element. The tensegrity cable dome is built into a variety of shape around the world but then a collapse accident is increasing. Owing to a collapse accident we must grip of the collapse mechanism to prevent an accident and construct the structure with safety and economy. In this study, I investigated the unstable characteristics of the Geiger-type and Flower-type tcnsegrity cable dome structures, which is the lightweight hybrid structures using compression and tension elements continuously, according to the difference of loading conditions.

  • PDF

Analysis of the Frequency for Cable of Cable-Stayed Bridges to Temperature Variation (온도변화에 따른 사장교 케이블 고유진동수 분석)

  • Lee, Hyun-Chol;Kim, Jin-Soo;Park, Kyoung-Ho;Lee, Jong-Jae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.2
    • /
    • pp.23-34
    • /
    • 2021
  • Cable was targeted for cable, which is a main material of cable-stayed bridges that have high frequency of use at home and abroad and many future construction plans. First of all, experiments were conducted on temperature loads that were permanently used due to changes in temperature of cables and changes in air temperature, taking into account changes in normal fat. The dynamic characteristics of cables were compared and analyzed by applying various systems to change dynamic characteristics by applying temperature change of cables. Comparing and analyzing the dynamic characteristics of cables, the acceleration, frequency and tension of cables due to temperature rise tended to decrease, the degree of influence of displacement of cables was analyzed, and the results of the mode characteristics of cables were analyzed. In particular, the correlation of cable acceleration, natural frequency, and tension due to changes in cable temperature showed that the cable tension is highly sensitive to acceleration and natural frequency.

Study on the effect of cable on the lateral behavior of S-shaped Pedestrian-CSB (S형 보도사장교의 케이블이 횡방향 거동에 미치는 영향 연구)

  • Ji, Seon-Geun;Yhim, Sung-Soon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.5
    • /
    • pp.577-584
    • /
    • 2019
  • Recently, CSB(Cable-Stayed Bridge) have been attempted to be atypical forms for landscape elements in Korea. CSB with new geometry need to analyze their characteristics clearly to ensure structural safety. This study's bridge is the S-shaped curved pedestrian CSB that has a girder with S-shape plane curve and reverse triangular truss cross section, inclined independent pylon, modified Fan type main cable and vertical backstay cable. Curved CSB can have excessive lateral displacement and moment when the tension is adjusted, focusing only on longitudinal behavior, such as a straight CSB. In order to analyze the effect of the cable on the lateral behavior of bridges, the cable is divided into two groups according to the lateral displacement direction of the pylon due to tension. The influence of the combination ratio of GR1 and GR2 on the girder, bearing, pylon, and vertical anchor cable was analyzed. When the tension applied to the bridge is 1.0GR1 plus 1.0GR2, In the combination of 1.2GR1 plus 0.8GR2, the stress on the left and right upper member of the truss girder and the deviation of the both were minimized. In addition, the horizontal force of the bearing, the lateral displacement and moment of the pylon, and the tension of the vertical backstay cable also decreased. This study is expected to be used as basic data for determination of tension of CSB with similar geometry.

Study on the Efficient Application of Vision-Based Displacement Measurements for the Cable Tension Estimation of Cable-Stayed Bridges (사장교 케이블의 장력 추정을 위한 영상변위 측정법의 효율적 적용에 대한 연구)

  • Lee, Hyeong-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.709-717
    • /
    • 2016
  • In this study, the convenience and efficiency of vision-based displacement measurement (VBDM) to estimate the cable tension of cable-stayed bridges and the requirements for its effective application were examined. To demonstrate its convenience and efficiency, it was confirmed that VBDM can be accomplished with a minimum amount of equipment using a commercial camcorder. In this case, it was found that the accuracy of estimation of the natural frequencies is sufficient, even though magnitude errors can occur when conducting high-speed recording at the low resolution afforded by the minimal equipment employed. It was also confirmed that the most important factor in detecting the precise natural frequencies is the use of the appropriate frequency range in the tension estimation using vibration. Based on these results, a study was carried out on the accuracy variation of the estimated tension according to the frame rate of a commercial camcorder. For this purpose, an experiment was performed to estimate the cable tension in a cable-stayed bridge model. Through this experiment, the detectable tensions of cables with various natural frequencies as a function of the frame rate were summarized. As a result, it was shown that the frame rate should be determined based on the natural frequency which is estimated to be located within the appropriate frequency range (approximately 10~75% of theoretical range) considering the aliasing and low-frequency distortion due to excitations.

An analysis on dynamic behaviour of a towing cable for maneuver of marine survey instruments (해양탐사장비 운용을 위한 예인케이블의 거동해석)

  • JUNG D.H.;KIM H.J.;MOON D.S.;SHIN P.K.;CHOI H.S.;PARK H.I.
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.55-60
    • /
    • 2004
  • In this study, the configuration and tension of a towing cable for side-scan sonar are predicted in an ambient flow and at an unsteady towing condition. The governing equation of three-dimensional dynamic analysis for a flexible cable is solved using a finite difference method. We successfully predict the configuration and tension of a side-scan sonar and designed the towing system. It is found in static analyses that the side-scan sonar must be towed to keep a its stable depth at a reasonable speed. The study also reveals in the transient analyses that the dominant component affecting the top tension is the tangential drag force for the larger towing speed than the critical speed, and the self weight of a towed instrument for the smaller towing speed than. It should be maneuvered for a towing vessel with good consideration for the impact effect in a cable due to tension peak when a towing speed is suddenly increase. The developed program can be applicable for three-dimensional dynamic analysis of a towing system for various marine survey instruments.

  • PDF

A Study on Three-dimensional Dynamic Analysis of a Towing Cable for Marine Survey Instruments (해양탐사장비 예인케이블의 3차원 동적해석에 관한 연구)

  • 정동호;김종규;박한일
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.8 no.2
    • /
    • pp.203-209
    • /
    • 2003
  • In this study, the configuration and tension of a towing cable for side-scan sonar are predicted in an ambient flow and at an unsteady towing condition. The governing equation of three-dimensional dynamic analysis for a flexible cable is solved using a finite difference method. We successfully predict the configuration and tension of a side-scan sonar and designed the towing system. It is found in static analyses that the side-scan sonar must be towed to keep a its stable depth at a reasonable speed. The study also reveals in the transient analyses that the dominant component affecting the top tension is the tangential drag force for the larger towing speed than the critical speed, and the soft weight of a towed instrument for the smaller towing speed than. It should be maneuvered for a towing vessel with good consideration for the impact effect in a cable due to tension peak when a towing speed is suddenly increase. The developed program can be applicable for three-dimensional dynamic analysis of a towing system for various marine survey instruments.

Estimation of Stay Cable Tension Using String Vibration Theory (현이론을 이용한 사장교 케이블 장력산정)

  • Park, Yeon-Soo;Choi, Sun-Min;Lee, Byung-Geun;Kim, Nin Jung
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.2
    • /
    • pp.17-22
    • /
    • 2009
  • Estimate method of cable tension forces can be classified into direct method and indirect method. Direct method is not accuracy and it has many restrictions. Therefore, in generally Indirect method, vibration method using natural frequency, has been applied to estimate the tension forces. In this study, cable tensions of recently constructed cable-stayed bridge are measured using string vibration method and this result comparing with result of multiple mode method. To put it brief, the error of string vibration method is not exceeding 2% under 7th mode. Specially third and 4th mode error is not exceeding 1%. safety.

A Study on Temperature Properties Analysis for Tension Measurement of Steel Cables Using Magnetic Sensor (자기센서에 의한 강재 케이블 장력측정에서 온도특성에 대한 연구)

  • Park, Hae-won;Ahn, Bong-young;Lee, Seung-seok;Park, Jeong-hak
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.2 s.54
    • /
    • pp.181-188
    • /
    • 2009
  • Measuring the tensile strength of steel cables used to support bridges is a critical inspection item in terms of the safety of a bridge. Today, cable tension is measured with the vibration method and loadcell. Recently, some advanced countries have conducted studies on measuring tension with magnetic method and are suggesting prospective results. Since there were no such studies ongoing in Korea, we began a study on measuring tension with magnetic method as we are undergoing researches to improve the precision of measurements. It is necessary to consider the influence for the magnetic field and the temperature of steel cables in tension measurement of magnetic method. In this paper, we tested an output characteristic of tension sensor according to temperature and deduced temperature compensation coefficient in the given magnetic field and applied the compensation coefficient to the tension measurement system in the lab. We analyzed and evaluated testing results for the output voltages of the tension sensor according to cable tensions.

Inelastic Nonlinear Analysis of Structures with Under -Tension System (언더텐션 시스템이 적용된 구조물의 비탄성 비선형 거동 해석)

  • Park, Duk-Kun;Lee, Jae-Hong
    • Journal of Korean Association for Spatial Structures
    • /
    • v.9 no.2
    • /
    • pp.91-97
    • /
    • 2009
  • This study presents geometric nonlinear and material analysis of under-tension structure using Total Lagrangian and Updated Lagrangian method. In the regard, the under-tension system enables the load of upper part to carry to the end of beam by pre-tensional force in cable. The under-tension system on lower part of the structure is applied in order to reduce the deflection and size of member. This study is performed with conforming of the effect by pretension value in the cable and applying loading. Dead and Live loads are supposed to apply nodal on the top member. The member force and deflection of the structure are with MIDAS and ADINA.

  • PDF