• 제목/요약/키워드: cNN

검색결과 110건 처리시간 0.023초

Smooth Formation Navigation of Multiple Mobile Robots for Avoiding Moving Obstacles

  • Chen Xin;Li Yangmin
    • International Journal of Control, Automation, and Systems
    • /
    • 제4권4호
    • /
    • pp.466-479
    • /
    • 2006
  • This paper addresses a formation navigation issue for a group of mobile robots passing through an environment with either static or moving obstacles meanwhile keeping a fixed formation shape. Based on Lyapunov function and graph theory, a NN formation control is proposed, which guarantees to maintain a formation if the formation pattern is $C^k,\;k\geq1$. In the process of navigation, the leader can generate a proper trajectory to lead formation and avoid moving obstacles according to the obtained information. An evolutionary computational technique using particle swarm optimization (PSO) is proposed for motion planning so that the formation is kept as $C^1$ function. The simulation results demonstrate that this algorithm is effective and the experimental studies validate the formation ability of the multiple mobile robots system.

로빈스-몬로 확률 근사 알고리즘을 이용한 데이터 분류 (Data Classification Using the Robbins-Monro Stochastic Approximation Algorithm)

  • 이재국;고춘택;최원호
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2005년도 전력전자학술대회 논문집
    • /
    • pp.624-627
    • /
    • 2005
  • This paper presents a new data classification method using the Robbins Monro stochastic approximation algorithm k-nearest neighbor and distribution analysis. To cluster the data set, we decide the centroid of the test data set using k-nearest neighbor algorithm and the local area of data set. To decide each class of the data, the Robbins Monro stochastic approximation algorithm is applied to the decided local area of the data set. To evaluate the performance, the proposed classification method is compared to the conventional fuzzy c-mean method and k-nn algorithm. The simulation results show that the proposed method is more accurate than fuzzy c-mean method, k-nn algorithm and discriminant analysis algorithm.

  • PDF

신경망 모델로 구성한 동해 울릉분지 표층 이산화탄소 분압과 변동성 (Sea Surface pCO2 and Its Variability in the Ulleung Basin, East Sea Constrained by a Neural Network Model)

  • 박소예나;이동섭;조영헌
    • 한국해양학회지:바다
    • /
    • 제21권1호
    • /
    • pp.1-10
    • /
    • 2016
  • 동해 표층 해수에서 측정한 이산화탄소 분압($pCO_2$)에 대해 기 확보된 자료는 해양-대기간 $CO_2$ 교환율을 정량화하고자 통계 기법을 적용하기에는 부족한 편이다. 이를 보완하기 위해 위성자료를 이용하여 관측이 이루어지지 않은 해역의 $pCO_2$를 신경망모델을 이용하여 채워 넣는(mapping) 연구를 시도하였다. 본 연구는 동해에서 현장관측자료가 가장 많이 축적된 울릉분지를 대상으로 2003년부터 2012년까지의 표층$pCO_2$자료와, Aqua 위성의 MODIS 센서로 관측한 해표면 온도(SST)와 엽록소(chlorophyll) 자료, 경위도 자료로 신경망모델을 구축하여 $pCO_2$ 분포도 작성과 변동성을 추정하고자 하였다. 신경망모델의 학습은 $pCO_2$ 관측자료와 모델결과값의 상관도가 95% 이상을 달성하도록 하였다. 모델 결과의 평균제곱근오차(RMSE)는 $19.2{\mu}atm$으로 관측자료의 변동 크기와 비교해서 훨씬 작은 수준이었다. SST와 chlorophyll에 연관된 $pCO_2$의 변동성을 살펴보면 chlorophyll 보다는 SST에 대해 더욱 강한 음의 상관 관계를 보였다. 모델이 출력한 $pCO_2$의 변동성은 SST가 내려감에 따라 커지는 경향을 보였다. $15^{\circ}C$ 이하에서는 $pCO_2$ 변동성에 대한 SST와 chlorophyll의 기여도가 뚜렷하게 나타났다. 반면 SST가 $15^{\circ}C$ 이상일 경우에는 $pCO_2$ 변동성은 SST와 chlorophyll의 변화에 대해 그리 민감하게 반응하지 않았다. 신경망모델 출력값으로 추정한 2003-2014년 사이의 울릉분지 표층수의 연평균 $pCO_2$ 증가율은 $0.8{\mu}atm$이었다. 신경망 모델이 울릉분지의 $pCO_2$에 대해 이전 연구보다 해상력과 오차가 향상된 $pCO_2$ 채워넣기를 가능케 해 준 점에 비추어 볼 때 국제정세에 따라 전역 관측이 수월하지 않은 동해의 탄소순환을 이해하는데 유용한 도구로 쓰일 수 있을 것으로 판단된다.

Structure of the Concordance Matrix Related to Extended Group Divisible Designs

  • Bae Jong-Sung;Kim Sea-Young
    • Communications for Statistical Applications and Methods
    • /
    • 제13권1호
    • /
    • pp.135-140
    • /
    • 2006
  • The paper by Paik (1985) introduced a structural property of the designs which was related to the concordance matrix $NN^{t}$ of the design. This special property was termed Property-C. The designs which have Property-C need not calculation of the generalize inverse of C matrix for solution of reduced normal equation. Paik also mentioned that some block designs belong to Property-C. This paper show the Extended Group Divisible designs defined by Hinkelmann (1964) are included in Property-C.

Neural Network Tuning of the 2-DOF PID Controller With a Combined 2-DOF Parameter For a Gas Turbine Generating Plant

  • Kim, Dong-Hwa
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제1권1호
    • /
    • pp.95-103
    • /
    • 2001
  • The purpose of Introducing a combined cycle with gas turbine in power plants is to reduce losses of energy, by effectively using exhaust gases from the gas turbine to produce additional electricity or process. The efficiency of a combined power plant with the gas turbine increases, exceeding 50%, while the efficiency of traditional steam turbine plants is approximately 35% to 40%. Up to the present time, the PID controller has been used to operate this system. However, it is very difficult to achieve an optimal PID gain without any experience, since the gain of the PID controller has to be manually tuned by trial and error procedures. This paper focuses on the neural network tuning of the 2-DOF PID controller with a combined 2-DOF parameter (NN-Tuning 2-DOF PID controller), for optimal control of the Gun-san gas turbine generating plant in Seoul, Korea. In order to attain optimal control, transfer function and operating data from start-up, running, and stop procedures of the Gun-san gas turbine have been acquired and a designed controller has been applied to this system. The results of the NN-Tuning 2-DOF PID are compared with the PID controller and the conventional 2-DOF PID controller tuned by the Ziegler-Nichols method through experimentation. The experimental results of the NN-Tuning 2-DOF PID controller represent a more satisfactory response than those of the previously-mentioned two controllers.

  • PDF

ATM망에서 퍼지 패턴 추정기를 이용한 신경망 호 수락제어에 관한 연구 (A Study on a neural-Net Based Call admission Control Using Fuzzy Pattern Estimator for ATM Networks)

  • 이진이;이종찬;이종석
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 추계학술대회 학술발표 논문집
    • /
    • pp.173-179
    • /
    • 1998
  • This paper proposes a new call admission control scheme utilizing an inverse fuzzy vector quantizer(IFVQ) and neural net, which combines benefits of IFVQ and flexibilities of FCM(Fuzzy-C-Menas) arithmatics, to decide whether a requested call that is not trained in learning phase to be connected or not. The system generates the estimated traffic pattern of the cell stream of a new call, using feasible/infeasible patterns in codebook, fuzzy membership values that represent the degree to which each pattern of codebook matches input pattern, and FCM arithmatics. The input to the NN is the vector consisted of traffic parameters which is the means and variances of the number of cells arriving inthe interval. After training(using error back propagation algorithm), when the NN is used for decision making, the decision as to whether to accept or reject a new call depends on whether the output is greater or less then decision threshold(+0.5). This method is a new technique for call admi sion control using the membership values as traffic parameter which declared to CAC at the call set up stage, and is valid for a very general traffic model in which the calls of a stream can belong to an unlimited number of traffic classes. Through the simmulation. it is founded the performance of the suggested method outforms compared to the conventional NN method.

  • PDF

신경망과 퍼지 패턴 추정기를 이용한 ATM의 호 수락 제어 (Call Admission Control in ATM by Neural Networks and Fuzzy Pattern Estimator)

  • 이진이
    • 한국정보처리학회논문지
    • /
    • 제6권8호
    • /
    • pp.2188-2195
    • /
    • 1999
  • 본 논문에서는 퍼지 패턴 추정기를 구성하여 신경망 학습시에 훈련되지 않은 새로운 종류의 호가 발생할 때, 재학습을 하지 않고 그 호의 수락/거절을 효과적으로 행할 수 있는 IFVQ-NNCA(Inverse Fuzzy Vectorquantizer-Neural Networks Call Admission Control)를 제안한다. 이 방식은 연결을 요구하는 호의 입력 트래픽 패턴이 발생하면, 그 입력패턴은 수락/거절 표준패턴(코드북), 퍼지 소속 함수값, 그리고 FCM(Fuzzy-C-Means) 연산을 이용하여 학습화한 패턴을 발생한 후, 그 패턴을 신경망의 입력으로 하여 호 수락/거절을 결정한다. 이 방식은 셀 스트림의 평균과 분산값을 트래픽 파라메터로 사용함으로써 트래픽 모델과는 무관한 호 수락제어가 가능하며, 입력패턴(프레임별 관측패턴)과 표준패턴의 멤버쉽 함수값을 CAC에 신고하는 트래픽 파라케터로 사용하는 새로운 방법이다. 신경망은 오류 역전파 알고리즘을 사용하여 표준패턴으로 학습한다. 시뮬레이션을 통하여 기존의 신경망 방식과 제안된 방식의 Fuzziness 값의 설정에 따른 호 수락/거절 오류를 비교하여 제안된 방식이 우수함을 보였다.

  • PDF

Fingerprinting 무선측위 알고리즘을 이용한 영역 기반의 주파수 간섭 관리 기법 (Location-based Frequency Interference Management Scheme Using Fingerprinting Localization Algorithms)

  • 홍애란;김광열;양모찬;오선애;정홍규;신요안
    • 한국통신학회논문지
    • /
    • 제37C권10호
    • /
    • pp.901-908
    • /
    • 2012
  • 미래의 지능형 공장 환경은 관리자가 M2M (Machine-to-Machine) 통신을 이용하여 원격으로 공장 안의 기기들의 동작 상태와 환경을 인지하고 관리하는 것을 목표로 하고 있다. 하지만, 공장 안에서 사용하는 통신 프로토콜인 WLAN (Wireless Local Area Network), ZigBee, Bluetooth 등은 동일한 ISM (Industrial Scientific Medical) 대역을 사용하기 때문에 상호 간섭이 발생하게 된다. 본 논문에서는 Fingerprinting 무선측위 기술을 이용하여 영역 기반으로 주파수를 할당하는 기법을 제안한다. 그리고 일반적인 기법이 가지고 있는 측위 성능의 문제점을 개선하기 위하여, k-NN (Nearest Neighbor) 알고리즘을 적용하고 또한 이를 기반으로 한 새로운 기법도 제안한다. 모의실험 결과를 통해 제안된 무선측위 알고리즘이 다른 기법들보다 측위 성능의 오차가 감소하였으며, 궁극적인 목표로 하고 있는 채널 간섭율 또한 향상되었기에 주파수의 간섭을 보다 효율적으로 관리할 수 있다는 결론을 얻었다. 아울러 지속적인 위치 추정을 통하여 공장 환경 내 안전도 보장할 수 있음을 확인하였다.

Predicting sorptivity and freeze-thaw resistance of self-compacting mortar by using deep learning and k-nearest neighbor

  • Turk, Kazim;Kina, Ceren;Tanyildizi, Harun
    • Computers and Concrete
    • /
    • 제30권2호
    • /
    • pp.99-111
    • /
    • 2022
  • In this study, deep learning and k-Nearest Neighbor (kNN) models were used to estimate the sorptivity and freeze-thaw resistance of self-compacting mortars (SCMs) having binary and ternary blends of mineral admixtures. Twenty-five environment-friendly SCMs were designed as binary and ternary blends of fly ash (FA) and silica fume (SF) except for control mixture with only Portland cement (PC). The capillary water absorption and freeze-thaw resistance tests were conducted for 91 days. It was found that the use of SF with FA as ternary blends reduced sorptivity coefficient values compared to the use of FA as binary blends while the presence of FA with SF improved freeze-thaw resistance of SCMs with ternary blends. The input variables used the models for the estimation of sorptivity were defined as PC content, SF content, FA content, sand content, HRWRA, water/cementitious materials (W/C) and freeze-thaw cycles. The input variables used the models for the estimation of sorptivity were selected as PC content, SF content, FA content, sand content, HRWRA, W/C and predefined intervals of the sample in water. The deep learning and k-NN models estimated the durability factor of SCM with 94.43% and 92.55% accuracy and the sorptivity of SCM was estimated with 97.87% and 86.14% accuracy, respectively. This study found that deep learning model estimated the sorptivity and durability factor of SCMs having binary and ternary blends of mineral admixtures higher accuracy than k-NN model.

스마트팜 열환경 모델링을 위한 Open source 기반 Data mining 기법 분석 (A Benchmark of Open Source Data Mining Package for Thermal Environment Modeling in Smart Farm(R, OpenCV, OpenNN and Orange))

  • 이준엽;오종우;이동훈
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 2017년도 춘계공동학술대회
    • /
    • pp.168-168
    • /
    • 2017
  • ICT 융합 스마트팜 내의 환경계측 센서, 영상 및 사양관리 시스템의 증가에도 불구하고 이들 장비에서 확보되는 데이터를 적절히 유효하게 활용하는 기술이 미흡한 실정이다. 돈사의 경우 가축의 복지수준, 성장 변화를 실시간으로 모니터링 및 예측할 수 있는 데이터 분석 및 모델링 기술 확보가 필요하다. 이를 위해선 가축의 생리적 변화 및 행동적 변화를 조기에 감지하고 가축의 복지수준을 실시간으로 감시하고 분석 및 예측 기술이 필요한데 이를 위한 대표적인 정보 통신 공학적 접근법 중에 하나가 Data mining 이다. Data mining에 대한 연구 수행에 필요한 다양한 소프트웨어 중에서 Open source로 제공이 되는 4가지 도구를 비교 분석하였다. 스마트 돈사 내에서 열환경 모델링을 목표로 한 데이터 분석에서 고려해야할 요인으로 데이터 분석 알고리즘 도출 시간, 시각화 기능, 타 라이브러리와 연계 기능 등을 중점 적으로 분석하였다. 선정된 4가지 분석 도구는 1) R(https://cran.r-project.org), 2) OpenCV(http://opencv.org), 3) OpenNN (http://www.opennn.net), 4) Orange(http://orange.biolab.si) 이다. 비교 분석을 수행한 운영체제는 Linux-Ubuntu 16.04.4 LTS(X64)이며, CPU의 클럭속도는 3.6 Ghz, 메모리는 64 Gb를 설치하였다. 개발언어 측면에서 살펴보면 1) R 스크립트, 2) C/C++, Python, Java, 3) C++, 4) C/C++, Python, Cython을 지원하여 C/C++ 언어와 Python 개발 언어가 상대적으로 유리하였다. 데이터 분석 알고리즘의 경우 소스코드 범위에서 라이브러리를 제공하는 경우 Cross-Platform 개발이 가능하여 여러 운영체제에서 개발한 결과를 별도의 Porting 과정을 거치지 않고 사용할 수 있었다. 빌트인 라이브러리 경우 순서대로 R 의 경우 가장 많은 수의 Data mining 알고리즘을 제공하고 있다. 이는 R 운영 환경 자체가 개방형으로 되어 있어 온라인에서 추가되는 새로운 라이브러리를 클라우드를 통하여 공유하기 때문인 것으로 판단되었다. OpenCV의 경우 영상 처리에 강점이 있었으며, OpenNN은 신경망학습과 관련된 라이브러리를 소스코드 레벨에서 공개한 것이 강점이라 할 수 있다. Orage의 경우 라이브러리 집합을 제공하는 것에 중점을 둔 다른 패키지와 달리 시각화 기능 및 망 구성 등 사용자 인터페이스를 통합하여 운영한 것이 강점이라 할 수 있다. 열환경 모델링에 요구되는 시간 복잡도에 대응하기 위한 부가 정보 처리 기술에 대한 연구를 수행하여 스마트팜 열환경 모델링을 실시간으로 구현할 수 있는 방안 연구를 수행할 것이다.

  • PDF