DOI QR코드

DOI QR Code

Sea Surface pCO2 and Its Variability in the Ulleung Basin, East Sea Constrained by a Neural Network Model

신경망 모델로 구성한 동해 울릉분지 표층 이산화탄소 분압과 변동성

  • PARK, SOYEONA (Division of Earth Environmental System, Oceanography Major, the Graduate School, Pusan National University) ;
  • LEE, TONGSUP (Department of Oceanography, Pusan National University) ;
  • JO, YOUNG-HEON (Department of Oceanography, Pusan National University)
  • 박소예나 (부산대학교 지구환경시스템학부 해양학전공) ;
  • 이동섭 (부산대학교 해양학과) ;
  • 조영헌 (부산대학교 해양학과)
  • Received : 2016.01.07
  • Accepted : 2016.01.19
  • Published : 2016.02.29

Abstract

Currently available surface seawater partial pressure carbon dioxide ($pCO_2$) data sets in the East Sea are not enough to quantify statistically the carbon dioxide flux through the air-sea interface. To complement the scarcity of the $pCO_2$ measurements, we construct a neural network (NN) model based on satellite data to map $pCO_2$ for the areas, which were not observed. The NN model is constructed for the Ulleung Basin, where $pCO_2$ data are best available, to map and estimate the variability of $pCO_2$ based on in situ $pCO_2$ for the years from 2003 to 2012, and the sea surface temperature (SST) and chlorophyll data from the MODIS (Moderate-resolution Imaging Spectroradiometer) sensor of the Aqua satellite along with geographic information. The NN model was trained to achieve higher than 95% of a correlation between in situ and predicted $pCO_2$ values. The RMSE (root mean square error) of the NN model output was $19.2{\mu}atm$ and much less than the variability of in situ $pCO_2$. The variability of $pCO_2$ with respect to SST and chlorophyll shows a strong negative correlation with SST than chlorophyll. As SST decreases the variability of $pCO_2$ increases. When SST is lower than $15^{\circ}C$, $pCO_2$ variability is clearly affected by both SST and chlorophyll. In contrast when SST is higher than $15^{\circ}C$, the variability of $pCO_2$ is less sensitive to changes in SST and chlorophyll. The mean rate of the annual $pCO_2$ increase estimated by the NN model output in the Ulleung Basin is $0.8{\mu}atm\;yr^{-1}$ from 2003 to 2014. As NN model can successfully map $pCO_2$ data for the whole study area with a higher resolution and less RMSE compared to the previous studies, the NN model can be a potentially useful tool for the understanding of the carbon cycle in the East Sea, where accessibility is limited by the international affairs.

동해 표층 해수에서 측정한 이산화탄소 분압($pCO_2$)에 대해 기 확보된 자료는 해양-대기간 $CO_2$ 교환율을 정량화하고자 통계 기법을 적용하기에는 부족한 편이다. 이를 보완하기 위해 위성자료를 이용하여 관측이 이루어지지 않은 해역의 $pCO_2$를 신경망모델을 이용하여 채워 넣는(mapping) 연구를 시도하였다. 본 연구는 동해에서 현장관측자료가 가장 많이 축적된 울릉분지를 대상으로 2003년부터 2012년까지의 표층$pCO_2$자료와, Aqua 위성의 MODIS 센서로 관측한 해표면 온도(SST)와 엽록소(chlorophyll) 자료, 경위도 자료로 신경망모델을 구축하여 $pCO_2$ 분포도 작성과 변동성을 추정하고자 하였다. 신경망모델의 학습은 $pCO_2$ 관측자료와 모델결과값의 상관도가 95% 이상을 달성하도록 하였다. 모델 결과의 평균제곱근오차(RMSE)는 $19.2{\mu}atm$으로 관측자료의 변동 크기와 비교해서 훨씬 작은 수준이었다. SST와 chlorophyll에 연관된 $pCO_2$의 변동성을 살펴보면 chlorophyll 보다는 SST에 대해 더욱 강한 음의 상관 관계를 보였다. 모델이 출력한 $pCO_2$의 변동성은 SST가 내려감에 따라 커지는 경향을 보였다. $15^{\circ}C$ 이하에서는 $pCO_2$ 변동성에 대한 SST와 chlorophyll의 기여도가 뚜렷하게 나타났다. 반면 SST가 $15^{\circ}C$ 이상일 경우에는 $pCO_2$ 변동성은 SST와 chlorophyll의 변화에 대해 그리 민감하게 반응하지 않았다. 신경망모델 출력값으로 추정한 2003-2014년 사이의 울릉분지 표층수의 연평균 $pCO_2$ 증가율은 $0.8{\mu}atm$이었다. 신경망 모델이 울릉분지의 $pCO_2$에 대해 이전 연구보다 해상력과 오차가 향상된 $pCO_2$ 채워넣기를 가능케 해 준 점에 비추어 볼 때 국제정세에 따라 전역 관측이 수월하지 않은 동해의 탄소순환을 이해하는데 유용한 도구로 쓰일 수 있을 것으로 판단된다.

Keywords

References

  1. Beale, M., M.T. Hagan and H.B. Demuth, 2010. Neural Network Toolbox 7. MathWorks, Natick, Mass, 951 pp.
  2. Borges, A.V., B. Delille and M. Frankignoulle, 2005. Budgeting sinks and sources of $CO_2$ in the coastal ocean: Diversity of ecosystems counts. Geophys. Res. Lett., 32: L14601, doi: 10.1029/2005GL023053.
  3. Broecker, W.S., 1982. Ocean chemistry during glacial time. Geochim. Cosmochim. Acta, 46(10): 1689-1705 pp. https://doi.org/10.1016/0016-7037(82)90110-7
  4. Cai, W.-J., M.H. Dai and Y.C. Wang, 2006. Air-sea exchange of carbon dioxide in ocean margins: A province-based synthesis. Geophys. Res. Lett., 33: L12603, doi: 10.1029/2006GL026219.
  5. Chen, C.-T. A. and A. V. Borges, 2009. Reconciling opposing views on carbon cycling in the coastal ocean: Continental shelves as sinks and near-shore ecosystem as sources of atmospheric $CO_2$. Deep-Sea Res. Pt. II, 56: 578-590, doi:10.1016/j.dsr2.2009.01.001.
  6. Cho, Y.-K. and K. Kim, 1996. Seasonal variation of East Korea Warm Current and its relation with the cold water. Societe franco-japonaise d'oceanographie, La mer 34: 172-182.
  7. Choi, S.H., 1995. Distributions of $pCO_2$ and $pCH_4$ in surface seawaters of the East Sea, M.S. thesis, Seoul National University, Seoul, 92 pp.
  8. Choi, S.H., D. Kim, J. Shim and H.S. Min, 2011. The spatial distribution of surface $fCO_2$ in the Southwestern East Sea/Japan sea during summer 2005. Ocean Sci. J., 46(1): 13-21. https://doi.org/10.1007/s12601-011-0002-2
  9. Choi, S.-H., D. Kim, J.H. Shim, K.H. Kim, H.S. Min and K.R. Kim, 2012. Seasonal variations of surface $fCO_2$ and sea-air $CO_2$ fluxes in the Ulleung Basin of the East/Japan Sea. Terr. Atmos. Ocean. Sci., 23(3): 343-353. https://doi.org/10.3319/TAO.2012.01.19.01(Oc)
  10. Choi, S.H., 2012. The Sea-Air $CO_2$ fluxes in the Korean Marginal Seas and the Western North Pacific. Ph.D Thesis, Seoul National University, Seoul, 123 pp.
  11. Friedrich, T. and A. Oschlies, 2009a. Neural network-based estimates of North Atlantic surface $pCO_2$ from satellite data: A methodological study. J. Geophys. Res., 114, C03020, doi: 10.1029/2007JC004646.
  12. Friedrich, T. and A. Oschlies, 2009b. Basin-scale $pCO_2$ maps estimated from ARGO float data: A model study, J. Geophys. Res., 114, C10012, doi:10.1029/2009JC005322.
  13. Intergovernmental Panel on Climate Change (IPCC), 2013. Climate change 2013: the physical science basis, Cambridge University Press, 996 pp.
  14. Jo, Y.H., M. Dai, W. Zhai, X.H. Yan and S. Shang, 2012. On the variations of sea surface $pCO_2$ in the northern South China Sea: A remote sensing based neural network approach. J. Geophys. Res.: Oceans (1978-2012), 117, C08022, doi:10.1029/2011JC007745.
  15. Kang, D.J., 1999. A study on the carbon cycle in the East Sea. Ph.D Thesis, Seoul National University, Seoul, 159 pp.
  16. Kim, J.Y., D.J. Kang, T. Lee, and K.-R. Kim, 2014. Long-term trend of $CO_2$ and ocean acidification in the surface water of the Ulleung Basin, the East/Japan Sea inferred from the underway observational data. Biogeosciences, 11(9): 2443-2454. https://doi.org/10.5194/bg-11-2443-2014
  17. Kim, K.-R. and K. Kim, 1996. What is happening in the East Sea (Japan Sea)?: Recent chemical observations during CREAMS93-96. J. Korean Soc. Oceanogr., 31: 164-172.
  18. Landschutzer, P., N. Gruber, D.C.E. Bakker, U. Schuster, S. Nakaoka, M.R. Payne, T.P. Sasse and J. Zeng, 2013. A neural network-based estimate of the seasonal to inter-annual variability of the Atlantic Ocean carbon sink. Biogeosciences, 10(11): 7793-7815. https://doi.org/10.5194/bg-10-7793-2013
  19. Lefevre, N., A. Watson and A.R. Watson, 2005. A comparison of multiple regression and neural network techniques for mapping in situ $pCO_2$ data. Tellus B, 57: 375-384. https://doi.org/10.3402/tellusb.v57i5.16565
  20. Mitchell, D.A., D.R. Watts, M. Wimbush, W.J. Teague, K.L. Tracey, J.W. Book, K.-I. Chang, M.-S. Suk and J.-H. Yoon, 2005. Upper circulation patterns in the Ulleung Basin. Deep-Sea Res. Pt. II, 52: 1617-1638.
  21. Oh, D.-C., M.-K. Park, S.-H. Choi, D.-J. Kang, S.-Y. Park, J.-S. Hwang, A. Andrey, G.-H. Hong and K.-R. Kim, 1999. The Air-Sea Exchange of $CO_2$ in the East Sea(Japan Sea). J. Oceanogr., 55: 157-169. https://doi.org/10.1023/A:1007833811440
  22. Omar, A.M., T. Johannessen, A. Olsen, S. Kaltin and F. Rey, 2007. Seasonal and interannual variability of the air-sea $CO_2$ flux in the Atlantic sector of the Barents Sea. Mar. Chem., 104: 203-213. https://doi.org/10.1016/j.marchem.2006.11.002
  23. Sabine, C.L., R.A. Feely, N. Gruber, R.M. Key, K. Lee, J.L. Bullister, R. Wanninkhof, C.S. Wong, D.W.R. Wallace, B. Tilbrook, F.J. Millero, T.-H. Peng, K. Alexander, O. Tsueno and A.F. Rios, 2004. The oceanic sink for anthropogenic $CO_2$. Science, 305(5682): 367-371. https://doi.org/10.1126/science.1097403
  24. Sarmiento, J.L. and N. Gruber, 2002. SINKS FOR ANTHROPOGENIC CARBQN.
  25. Takahashi, T., J. Olafsson, J.G. Goddard, D.W. Chipman and S.C. Sutherland, 1993. Seasonal variation of $CO_2$ and nutrients in the high-latitude surface oceans: A comparative study. Global Biogeochem. Cycles, 7(4): 843-878. https://doi.org/10.1029/93GB02263
  26. Takahashi, T., S.C. Sutherland, C. Sweeney, A. Poisson, N. Metzl, B. Tilbrook, N. Bates, R. Wanninkhof, R.F. Feely, C. Sabine, J. Olafsson and Y. Nojiri, 2002. Global sea-air $CO_2$ flux based on climatological surface ocean $pCO_2$ and seasonal biological and temperature effects. Deep-Sea Res. Pt. II, 49: 1601-1622. https://doi.org/10.1016/S0967-0645(02)00003-6
  27. Takahashi, T., S.C. Sutherland, R. Wanninkhof, C. Sweeney, R.A. Feely, D.W. Chipman, B. Hales, G. Friederich, F. Chavez, C. Sabine, A. Watson, D.C.E. Bakker, U. Schuster, N. Metzl, Y.-I. Hisayuki, M. Ishii, T. Midorikawa, Y. Nojiri, A. Kortzinger, T. Steinhoff, M. Hoppema, J. Olafsson, T.S. Arnarson, B. Tilbrook, T. Johannessen, A. Olsen, R. Bellerby, C.S. Wong, B. Delille, N.R. Bates and H. J. and De Baar, 2009. Climatological mean and decadal change in surface ocean $pCO_2$ and net sea-air $CO_2$ flux over the global oceans. Deep-Sea Res. Pt. II, 56(8): 554-577. https://doi.org/10.1016/j.dsr2.2008.12.009
  28. Talley, L.D., J.L. Reid, and P.E. Robbins, 2003. Data-based meridional overturning stream functions for the global ocean. J. Climate, 16(19): 3213-3226. https://doi.org/10.1175/1520-0442(2003)016<3213:DMOSFT>2.0.CO;2
  29. Telszewski, M., X.A. Padin, and A.F. Rios, 2009. Estimating the monthly $pCO_2$ distribution in the North Atlantic using a self-organizing neural network. Biogeosciences, 6(8): 1405-1421. https://doi.org/10.5194/bg-6-1405-2009
  30. Thomas H., Y. Bozec, K. Elkalay and H.J. De Baar, 2004. Enhanced open ocean storage of $CO_2$ from shelf sea pumping. Science, 304: 1005-1008. https://doi.org/10.1126/science.1095491
  31. Tsunogai, S., S. Watanabe and T. Sato, 1999. Is there a "continental shelf pump" for the absorption of atmospheric $CO_2$?. Tellus B, 51(3): 701-712. https://doi.org/10.1034/j.1600-0889.1999.t01-2-00010.x
  32. Tsunogai, S., K. Kawada, S. Watanabe and T. Aramaki, 2003. CFCs indicating renewal of the Japan Sea Deep Water in winter 2000-2001. J. Oceanogr., 59: 685-693. https://doi.org/10.1023/B:JOCE.0000009597.33460.d7
  33. Volk, T. and M. Hoffert, 1985. Ocean carbon pumps: analysis of relative strengths and efficiencies in ocean-driven atmospheric $CO_2$ changes, In: The Carbon Cycle and atmospheric $CO_2$: Natural Variations Archean to Present, edited by: Sundquist, E.T. and W.S. Broecker, Geophysical Monograph 32, American Geophysical Union, Wash. D.C. pp. 99-110.
  34. Yamada, K., J. Ishizaka, S. Yoo, H.C. Kim and S. Chiba, 2004. Seasonal and interannual variability of sea surface chlorophyll_a concentration in the Japan/East Sea (JES). Prog. Oceanogr., 61(2): 193-211. https://doi.org/10.1016/j.pocean.2004.06.001

Cited by

  1. Estimation of Fugacity of Carbon Dioxide in the East Sea Using In Situ Measurements and Geostationary Ocean Color Imager Satellite Data vol.9, pp.8, 2017, https://doi.org/10.3390/rs9080821