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Smooth Formation Navigation of Multiple Mobile Robots
for Avoiding Moving Obstacles

Xin Chen and Yangmin Li*

Abstract: This paper addresses a formation navigation issue for a group of mobile robots passing
through an environment with either static or moving obstacles meanwhile keeping a fixed
formation shape. Based on Lyapunov function and graph theory, a NN formation control is

proposed, which guarantees to maintain a formation if the formation pattern is C kK k21, In

the process of navigation, the leader can generate a proper trajectory to lead formation and avoid
moving obstacles according to the obtained information. An evolutionary computational
technique using particle swarm optimization (PSO) is proposed for motion planning so that the

formation is kept as C' function. The simulation results demonstrate that this algorithm is
effective and the experimental studies validate the formation ability of the multiple mobile robots

system.
Keywords: Adaptive NN, formation navigation, interaction topology, particle swarm
optimization.

1. INTRODUCTION robots can be described by an adjacency matrix based

Formation navigation can be observed in spacecraft
formation flying, robotic vehicles formation moving,
and mobile robots formation surveying. Formation
can be understood as a kind of information consensus
in which agents (robots) interact with each other using
various sensors and communication techniques. In
order to understand the relationship between
individual robots, graph theory is often used for the
description of these interactions [1,2]. Since the
formation issue of multiple mobile robots is also
viewed as a distributed control problem, system
stability theory such as Lyapunov method can be used
effectively to analyze system performance of the
formation navigation [3-6].

In this paper, in order to understand the internal
structure of a formation well, the formation pattern
and the interactive relations among robots must be
defined clearly. The formation pattern is described by
a matrix in which every entry describes relative
distances between robots. The interactions among
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on graph theory. Combining these two matrices, a
unique matrix is constructed to describe the structure
of a formation. Each entry in the matrix is viewed as a
moving point, then one certain robot is controlled to
follow this moving point. Based on Lyapunov method,
it is proved that even if some parameters of an
individual model are unknown, in the case of
perturbations existed, neural network (NN) control
can enable robots to achieve regular formation with
fixed or dynamic formation patterns [7,8].

After solving individual robotic control, a
formation navigation technique is applied to
accomplish obstacle avoidance while keeping fixed
formation shape. Relative to the real-time reactive
way, such as artificial potential method, in which the
motion of robots is controlled by artificial force
calculated on real-time [9-11], the motion planning,
namely path planning, is more convenient for
evaluating paths ahead of robots moving, because it
describes paths in the form of smooth splines [12], so
that the paths generated are predictable. Due to the
path is described in the form of high order polynomial,
the computations referred in the analytical motion
planning are complex and even unsolvable. To
decrease computational burden, we wuse an
evolutionary computational technique in terms of
particle swarm optimization (PSO) to achieve motion
planning [13-15]. Different from other evolutionary
computations in which desired paths are expressed as
nonsmooth ones [16,17], the PSO method can
generate smooth trajectories so that the adaptive NN
control strategy can be applied to control a group of
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robots to follow the smooth trajectories while keeping
formation pattern.

This paper is organized as follows with the
following section presenting the formation description
based on formation pattern and interaction topology.
Section 3 and Section 4 analyze the control strategy
and its stability. Formation navigation with obstacle
avoidance ability is studied in Section 5. Simulation is
performed in Section 6. Experimental studies are
conducted in Section 7. Conclusions are given finally
in Section 8.

2. DESCRIPTION OF FORMATION

Given a group of robots labeled by R;
(i=1,2,---,N), where R, denotes the leader of the

T
formation. Let Pd:[pld pzd pj‘f,] be the

desired positions of all robots relative to R;, where

d T
p; =0.  Let P=[p1 )2 pN} be the

practical positions of robots.
Formation pattern describes the relative positions
among robots over time, which is represented by a

relative matrix defined as DY (r)= {Dg (t)}N N

where D,? (1)=pf (t)—p;{ (r) with DE(r)=0. In

()

the practical distances between robots where D(f)
=p; (;)_ p; (t) Obviously for leader-followers for-

mation, Dd(t) should be broadcasted by R; to other
members.

Six robots are illustrated to form a rectangle
formation as shown in Fig. 1. If projecting their
positions onto a plane whose frame orientation is
denoted by X/Y, a formation pattern is generated,
whose coordinates in X-direction are shown in the
matrix listed on the bottom of this page.

If a robot has known its desired position in a
formation, it needs to detect his neighborhood to
move to the desired position. That means it should
interact with other members. A directed adjacency
graph @ is exploited to describe the interaction among
robots which consists of a set of vertices (nodes) V

D,

i denote

response to DY (1), let D(r) ={

0 acos(&—%) acos(t9+%)
acos(0+Z) 0 2acos(0+Z)
" acos(6-%) 2acos(6-%) 0
" [ V2acos(0+32) —acos(6) —J3acos(0—arctan(2))
acos(6+ 1) \/Eacos( —37”) x/zacos(t9+37”)
|VZacos(0-) —fSacos(0+artan(@))  acos(6+7)
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Fig. 2. An example of interaction topology among six
robots.

and a set of arcs 4, where a(v,w)e 4 and v,weV.
It is pointed from v to w. In this paper arc a(v,w)

represents that R, takes R, as a reference object

to decide the relative position. Since the reference
position of a robot may be determined by several

neighboring robots, if we let Gz{gij}NxN be

adjacency matrix associated with graph G, g is
defined as a weight to denote the influence factor of R;
to R; in terms of the reference position. The values of
g; satisty the following property:

N
g =1 (M
j=1

The interaction topology and adjacency matrix are
illustrated in Fig. 2. If Ry plays the role of the leader
of the formation, then g;;=1 holds and other diagonal
entries of G are zero, ie. g;=0, (i=2,-,N).

Normally for any one robot, all of its leaders have the

V2acos(6-2) acos(8) V2acos(0+2)
acos(6) x/iacos(ﬂ +%) V5acos(6 +arctan(2))
J3acos(0—arctan(2)) 2acos(6-%) acos(0)
0 acos(0+Z) 2acos(6+£)
wilog) 0 a0y
wes(o-8) oo 0|
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same effect on determining its reference point. For
example since R, has two leaders R, and R,, we can
obtain. g, =gy, =0.5.

Let Ez{ej}le =(GoD—GoDd)1NX1 be a relative
error vector, where the operator ‘o’ refers to a
Hadamard product. If let a matrix H be defined as
H =1 -G, the relative error is expressed as

E=HP-G+D%y, :P—(GP+GoDd1NX1).(2)

N
Due to the property of G, it holds that Z h; =0, and

=

h; =0, (j=12,--,N). Since R, is the formation

leader, it holds g, =1, while g; =0, (j#/), and

D =0. Therefore the [-th element of the relative

error, ¢, equals zero. It’s reasonable because the
adjacency graph is built relative to the leader, the
relative error of R; should be zero.

The following lemmas are introduced:

Lemma 1: Given a nonnegative matrix G satisfying
the property of stochastic matrix, the matrix
H =1-G has at least one zero eigenvalue and all of
the non-zero eigenvalues are in the open right half
plane, and p(H)<1. Furthermore H has one zero

eigenvalue and the kernel of H is span{l} if and

only if the direct graph associated with G has a
spanning tree.

Lemma 2: Given an error shown in (2), if the
adjacency matrix G is connected, all robots will
follow the leader of the formation and form a
formation in case of E =0.

Proof: Let R; be the formation leader. If we obtain

P? by solving equation HP? =G oDl Nxl» then
E=H (P - )
Two facts are given below: 1) Because R; is the

leader of the formation, the entries in the /-th row of
H are zero, 2) Since D; =0, the /-th element of

GoD%1 Nxl 1S zero too. Since the equation p,d =0
holds, the equation can be reduced to

ﬁﬁd :6°5d1(N_1)X1, (3)

T
5d d d d d r
where P¢ = [ P Pi-1 Pivl PN J A

is the submatrix of H resulting from taking off the

Ith row and the /th column of H, G and D are

the submatrices of G and D resulting from taking off
the /th rows of them respectively. Obviously there is
only one nonzero solution for (3). Hence the desired

relative position P? is unique.
If £=0, we have H(P— p? ) =0. According to

Lemma 1, we have (P -P? ) e span{l}. That means

all elements in vector P—P? are the same. Due to
pld =0, we have p,=p +plf1, (i=1---,N). That

means all members reach the desired positions
described by D“(f), in other words, formation is
formed.

Lemma 2 suggests a way to realize formation
control. Since D is the information broadcasted by
the formation leader and G is determined by the

practical interaction among robots, GP+G o DY Nxl

in (2) can be measured on real-time. Hence every
robot can control itself by decentralized control
method to follow reference points determined by

GP+GoD1 nNxl SO that conditions of Lemma 2 are
satisfied, and formation is formed.

3. INDIVIDUAL CONTROL STRATEGY

3.1. Dynamic description for individual robot

A kind of two-wheel car-like mobile robot shown in
Fig. 3 is exploited to achieve the formation task. If we
take the center of mass as the robot’s position, the
dynamic equation for such individual robot is
expressed as

M) +V(q,d)g+74 =I (DA+B(@r,  (4)

where ¢=[p, p, 9]T represents general coor-

dinates, 7, denotes bounded disturbance and

unmodeled dynamics, other matrices referred in the
equation are given by

m 0 md sin @
M(qg) = 0 m —md cos@ |,
mdsing -mdcos@ I, +md?
0 0 mdfcosd
rz[r, T,]T, V(g,g)=|0 0 mdfsiné |,
0 0 0
Y
(p..p,)
X

— Passive wheel

& Driving wheel

Fig. 3. A two-wheel-driven mobile robot.
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. cosd cosd
B=—|sinf sind |, J(g)=[sinf -cosd d].
r
L —L

The nonholonomic constraint is expressed as
J(q@)g=0 or p sinf— pycosH +d0@=0. Then the

second order derivative of & is expressed as:

o1 . | T N
6’:;(pycosﬁ—pxs1n6?)+?(pi—pi)sm29-
)

- dl—z b (cos” & ~sin® ).

A full rank matrix S(g) is formed by the vectors
spanning the null space of constraint matrix J(g) such

cos@ —dsinf
that S7(q)J'(q)=0, where S(g)=|sin® dcosé |.
0 1

Multiplying both sides of (4) by S’ to eliminate
nonholonomic constraint forces A, yields

STM(9)i+ STV (q.d)i+74=ST B(g)r, (6)

where ?szT 7;. For a formation task, the key

point is how to keep relative positions among robots,
so using (5) we can get a reduced system in which &
is enclosed into the system’s parameters. That means

cosf sind
if define p= 7= > and
if define p=[p, py] {_sina cosﬂ} o

m 0
My = { 0 L J , (6) can be transformed to
d

MyTp+MyIp=STBr—-7,. (7

3.2. Neural network controller
From Lemma 2 we know that if we take

P! =GP+GoD? -1 nx1 as local reference position,
when (2) converges to zero, the formation is formed.
If P? is assigned to individual robots, the ideal
reference point of R; is in the form of pid =

N
Z g;(p; + D,-;? ). Therefore we can define the
j=

individual relative position error as
d Y d
& =p;—p; =Pi‘zgij(}7j +Dy). (3
=
A filtered error is defined as z; =¢;+Ae;. If a

temporal variable is defined as pi= pfl—Aei,

then z; = p,— p;. Substitute it into (7), and let

%;=T;z;, thus

. T o = .
My%;=S Bt;— M;P; ~ViP; ~Tid> )
_ om0 cosd, sin6; | _ .
where 47, = 0 g —sinf; cosf; |’ V’:Z’(xsme"
. 1
1

i

d;
In practical situations, the values of matrices above
are always not measured accurately. So a neural

. m; 0 \fgin g, —cosf;
-ycosé,) I ) .
0 cosf; sing;

network is used to model the item j7;p7 +77;p; on-
line. _
A nonlinear function is defined as f(X;)= if;p;

T
+7,p] inwhich X, =[5, sin6 cos6 B, p] |

who satisfies the following inequality:

d ~
[Xi]= a0 + e || +es, (10)
where ¢; to c¢; are positive scalars, Qd is the
bound satisfying
o d
p;
. d d
pi|sQ". (11)
d
pi

To simplify the expression, the subscript i is
omitted. It is supposed that there exists a two-layer
feedforward NN as shown in Fig. 4, which can
approximate f(X).

X =WloW X)+e, (12)

where ¥ e RVI"NH  represent the input-to-hidden-

Fig. 4. A two-layer feedforward neural network.
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layer interconnection weights; W e RNVi*No repre-
sent the hidden-layer-to-outputs interconnection
weights; Ny, Ny and Ng are the numbers of neurons in
the hidden layer, the input layer, and the output layer
respectively. The activation function o(:) is in the

form of o-(x)zl——I:, g is the NN functional
+e

approximation error.
A NN function f (X) is constructed to estimate
f(X) on-line, which can be written as

FO=pTapx), (13)

where W and V are estimators of NN weights.
The estimated errors are defined as f = f— ]; )
W=W-W, and V=V ~V. The hidden-layer output
error is defined as 6=c-6=c(VTX)- o-(I}TX) .
Applying Taylor series expansion, we can obtain

oV X) = X)+a (T XPT X + 0T X)%, (14)

where o'(p) = 9oy) . Therefore,
¥ ly=p
& =o' XWX +0F XY, (15)

where O(pTX )2 is a term with order two, which

satisfies the following property:
Property 1:

067302 < ¢4+ es0? |7 e |7 el 4[] .

< Cy + g ||I7“ F+CG ||I;“ F IIE" )

where ¢, to cg are positive scalars, ¢g = cSQd +cq.

Substituting the approximated f(X) into (9), we

have
Moz =S"Br— f(X)-74 an
=S"Br-WloWTX)-74+e.

The input-output feedback linearization control
technology and adaptive backpropagation learning
algorithm are applied to stabilize individual robot
system, which can be expressed as

t="BY (le PTX)- Kz +y), (18)
W= Fé'pT XzT—F&gT—KF"Z“ 74
v =-Ux(sTiz) -xU|E|V, (19)

where K =diag{ki, k»}, in which & and k, are

positive scalars; » is a robust control term to

suppress the disturbance of unmodeled structure of
dynamics 7,; and functional approximation error of

NN ¢; F and U are positive definite design
parameter matrices governing the speed of learning.
Substitute control law into (17), and let ¢ and &

be (V' X) and o(pTX) respectively, thus
Myi=-Ki Wi+ T6+y-7,+e. (20

Adding and subtracting wlé and Vf/T 6 , and
considering (14) and (15), we have

My =-Kz - (6 -6 X) - 6P X +5s+7,21)
where s(¢) is a disturbance term in terms of
s)=—-T6VIX WO TX)? -7,+¢6 (22)
4. STABILITY OF FORMATION CONTROL

The desired formation shape is determined by the
formation pattern Dd(t) and interaction matrix G. In
practice, due to the different requirements of
formation tasks, formation pattern and interaction
topology may be either invariant or variant.

4.1. Stability under variant formation pattern and

invariant interaction topology

When a formation with a kind of formation shape is

passing a field with obstacles, two actions may

happen to avoid obstacles:

1) A new formation pattern (Dd(t)) is generated to
make the formation avoid obstacles.

2) A new desired path for the formation leader, R,, is
generated, so that R, follows this new path to lead
the whole formation to pass through obstacles.
This change induces change of formation pattern
D).

For these two changes about formation pattern, the
following theorem represents the preconditions under
which the control strategy ensures the convergence of
the system.

Theorem 1: For a multi-robot system which has a
predetermined leader, if formation pattern D¢ (7) is
C* function with k21, and adjacency matrix
associated with interaction graph is connected and
invariant, the robots must converge to the formation
pattern following up the individual control strategy
represented in (18) and (19).

Proof: An important assumption is that D?() is at

least C!. Then DA s Lipschitz continuous.

The dynamic equations of the system consist of
(19) and (21). According to the definition of sigmoid
function, it holds that Vxe R, o(x)e[0,1]. And its
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derivative satisfies Vx e R, G'(x)e[O,%]. All para-

meters such as F, U, x, 74 & are bounded.
Therefore to make the dynamic functions (19) and
(21) be locally bounded, the key precondition is that

T
Xl-=[pi sing; cosd; pl’ pTJ is bounded.

1

According to the definition of p,-d , the following
formula holds for roboti :

N
_y ) L
Xi<coQf +agziten + . 8y (pj +pj+pf)’(23)

j=1
where ¢y to ¢;; are positive scalars, and Q;j satisfies
N d
z] lg’]D
N ad || o« 29
Zj:lgijDij <0 24)

Obviously, to make X; be locally bounded, all
positions of robots p; should be at least c'.

To simplify expression, the subscript i is omitted
in the following proof. Assume that X is bounded,
then (19) and (21) are locally bounded functions.
According to the properties of integral, for a finite
31), W(r) and V(1)
are Lipschitz continuous. From the definition of the
filter error Z , we know the position of robot p(¢) is

interval of time [0 #], # <o,

smooth continuous. Considering all robots, it is
concluded that if initial coordinate p(0) is finite,
after a finite interval [0,7], X(¢) is bounded.
Therefore (19) and (21) are locally bounded
functions. And both equations can be expressed in
Filippov sense [18]. Since Z, W and V are
Lipschitz continuous, the following expression holds.

W ek [ F&'p Xz - Fo:" —xF|E|# ]
(25)

=F. K[&,VTXZT—FO' :I
where K[f](Z) is defined as

K[flx=[) (| cof(BES)-N),  (26)

50 1i(N)=0

denotes the intersection over all set

where ﬂ

H(N)=0
of Lebesgue measure zero. Similarly,

v e-U-k[ xR | -xU|F|7, @7)

fe-My'Kz - M -K[W 6 - 69T x)

TS X s [+ Mgy, (28)
A Lyapunov candidate is defined as
L= %[ZTMOE +ir{p TF W o {VTU_IV}J. (29)
Obviously L(0)=0.

Using Lyapunov theorem on nonsmooth system
[19], we have the derivative of Lyapunov function

L= ZTM0§+tr{WTF_1W} +rr{I7TU‘11?}
C—ETM61K2+tr{W( F'w - K[az ~6pTxz T])}
w77 (U717 k[T )|+ 27 (kD51 7)
c—gTM(;‘KzHr{W(K[aZT—aV be
-6 -6pTx: )
w7 (k[ X6 |- [ x0T )|
+kF 3o [T |+ U] {77V} + 27 (KIS + )
= ~5TKE + x| {77 (W -7 )}

~ ke (7T (v -7 )+ 2" (x[5]+ 7).
(30)
It is noticed that Y =diag{W,V'}, Y= diag{Vf/,I}} ,

and ¥ =Y —Y . Then (30) can be expressed as
L= Kz 4wl {77 (v = F)}+ 2" (% [s]+7)- GD)
The robust term is designed as

Ky (|7 4000 )27 i k=0

y= (32)
K (7] )2 JE=0,

where J and K, are positive, Y, is the bound of
Substituting (32) into (31) and
considering it holds that tr{Y(Y - Y)} = <Y, Y>F -

~112 ~
|71, <

L= Ky I + 1

ideal weights.

|7 i 220, we get

(N

A, + i o -1

ey
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where K,
The following property holds:
Property 2: Based on Property 1, since X is
bounded, Y and Z are smooth continuous, the

disturbance term s(¢) is bounded by

is the minimum singular value of K.

[KLs@]) < Co + G Y] - +Co ||

1 RN D)

where Cy, C; and C, are positive scalars. Substituting
it into (33), yields

L < _Kmin ”Z||2+K”§”(” )7” F”Y” F—|

Ky

+Co[[7] £ ) - /1l

17)

Yy, ) 212+l (o + 7] = G5

~

Y

It holds that || +¥y 2 7| +|¥|F 2[Y-7], =

“)7 " r - Taking Ky > C,, we can obtain

LK |+l (7] 111 -] )

m

Al (Co+CF )=

<J&[ x Ar(ne-7),)-c0  Go

min ”

Z" K

-Gl r+/]

2| Kullon{ 7] -2 25 -0

G . . xC3
where C3 =Y, +— . Obviously, if we take J=-—=

+Cy, it follows that
. _ _ N a2
L[| Kyl +<(|7] -~ ) <0 67

Hence (29) is a Lyapunov function. According to
the structure of (29), %, W, and V are bounded.
According to LaSalle’s principle for nonsmooth
system [19], the system must stabilize to the invariant

set included in {2}17:0}, here 7=0. Since the

determinant of T 1is one, it holds z=T'3=0 in
case of Z=0. Furthermore e¢ and é converge to
zero too. And the relative error defined in (2)
converges to zero. According to Lemma 2, we can
draw the conclusion that the robots converge to a

formation whose pattern satisfies C ko k>1.
W and V
converge to zero. Hence although f (X) approaches

The proof does not assert that

to f(X), the W and V may not converge to the

R, R, Rs Ry R,
@ R, R¢ Rs R, R; R, Ry B B &

Rs B3 - =

5 = B @ @ B P ;e o B o
& R¢ Rs R

Ré@ R3 6 5 3
(1) @) ®)

Fig. 5. A variant formation pattern.

desired weights ¥ and V' without error eventually. But
since for a formation, the most important thing is to
keep a formation shape, it is acceptable that there exist
estimated errors on NN weights.

To verify the performance of the controller, a
simple simulation is illustrated where six mobile
robots are required to form a formation with patterns
varying three times as shown in Fig. 5.

The interaction topology among robots is invariant, i.e.

1 0 0 00 0
1 0 0 00 0
1 0 0 00 0
G= :
01 0 000
0 050500 0
0 0 1 00 0]

Some important parameters used are listed as follows:
* Robot’s size is 0.14m x 0.08m, and its mass is 1kg,
* The disturbance 7, is akind of white noise whose

range is limited within [-0.05,0.05].
¢ Parameters used in (18) and (19) are chosen
as: K =diag{10,10}, the NN includes 40 hidden

nodes, and learning speeds in both F and U are

identically 0.1, x =10, and J=0.01.

The trace of the formation is shown in Fig. 6. Since
this simulation is to test the control strategy’s
performance under different formation patterns, the
times for pattern change are predetermined. R is the
leader of the formation, whose desired trajectory is
predetermined. R, follows the trajectory using the
same control strategy as others. The tracking errors of
all six robots are shown in Fig. 7. Obviously the
control strategy guarantees that all tracking errors
converge to zero. That means the robots can keep a
regular formation according to the formation pattern.

4.2. Stability under variant interaction topology
Due to its perceiving range and communication
bandwidth, one robot can communicate with other
robots within a certain range. Hence if robots have to
change their neighborhoods for exchanging
information, the interaction topologies also change.
When interaction topology is changed from ¢, to

G, as well as the adjacency matrix is changed from
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The trace of the foramtion
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Fig. 6. The trace of the formation.
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Fig. 7. The relative errors of all robots.

G, to G, even if the formation shape and the positions
of robots are fixed, the relative errors associated with
the two adjacency matrices are different. That means
at the instant of the change, the error shown in (8) is
noncontinuous, as well as (21) is noncontinuous.
Hence the control strategy can not be expressed in the
Filippov sense. So we have to modify control
strategies to control this noncontinuous system.

Let the set be G ={G;:i=12,---}" which consists
of all possible connected adjacency matrices. If a time
sequence is denoted as {ro,f,-, 0}, 4 >0
where ¢, is the instant when the change of adjacency
matrix occurs, the duration of formation is a
sequence {[to,tl), CY R ERAR }, and the

adjacency matrix in duration [f;_;,#;) is denoted by

G, . Since pld =0, the equation H,-Pd=G,-oDd

1y has identical solution P9 for any G; €G.
When the adjacency matrix is changed at the instant

t;, the control torque is infinity. To eliminate the

[
infinite point, a modification of control torque is

proposed as follows:

() =7(t;). (38)

Then the control strategy is not a time continuous
feedback control any more. In fact, a simple “switch”.
can be added into the controller, so that when the
robot has to change its reference objects, its controller
maintains the same control torque as that ahead of this
change for a short duration.

Based upon the previous analysis on formation
control for invariant interaction topology, we have the
following theorem describing performance of
formation with variant interaction topologies:

Theorem 2: Given a multi-robot system with a
predetermined leader, if the interaction topologies
among robots change from time to time, then there
exists a temporal sequence of adjacency matrices

{Gy»Gry

0 . } t; > t;_y, describing relationship change,

represents the adjacency matrix during
-), and

where G,
time-interval in [£,_,,). If G, €G (i=12,

formation pattern p? is c* (kZl) function, the

system will converge to a unique formation according
to individual control strategy shown in (18) and (19).
The proof of Theorem 2 is very similar to Theorem
2 in {20] except that in [20] only formation pattern
satisfying C” property is analyzed. But this
difference does not affect the proof on the stability of
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formation control with variant interaction topology
too much. In a short, the main idea of the proof is
based on Theorem 1. If the modification mentioned
above is considered, it can be proved when interaction
topology is changed, the sudden change of tracking
error e is bounded, and in each interval [f,_;,#;) the

system is convergent according to Theorem 1. Hence
when time goes to infinity, the robots will still be able
to form a formation, even if the changes of interaction
topology make the system become a noncontinuous
one.

5. FORMATION NAVIGATION WITH
OBSTACLE AVOIDANCE

The motivation of the formation navigation is
described as follows: It is assumed that the sensor
range of the leader R, is bounded but large enough, so
that R; can perceive any obstacles which may collide
with robots in the near future. If there are no obstacles
perceived by R, it will generate a beeline connecting
its position with the destination, so that other robots
will follow R; to reach the destination. But if any
obstacles are moving into the sensor range of R, it
will generate a proper path to the destination, so that
all members of the formation follow it to avoid
moving obstacles while keeping regular formation
shape. During the process the formation pattern
should be changed to avoid obstacles conveniently.

Owing to the sensor limits for detecting obstacles,
R; is only able to perceive obstacles within its sensor
range. With appearance and disappearance of
obstacles within its sensor range, R, has to generate
desired paths from time to time, which will induce the
change of formation pattern D (7). At the same time,
since interactions among robots may be truncated by
obstacles, robots have to find new interactions with
other robots to set up new reference points. That
means the interaction topology, or adjacency matrix G
will be timely changed. However the two theorems
mentioned above imply that if formation navigation

ensures the paths generated are smooth continuous, i.e.

ct (k21) , robots can keep formation using the

decentralized NN controller, even if D¢ (1) and G

are variant. Hence if the formation shape is fixed, the
key point of formation navigation is the path planning
for R, in order that the paths generated are smooth
continuous with obstacle avoidance for all robots.

This paper proposes a path planning via particle
swarm optimization to fulfill these requirements.

5.1. Description of desired trajectory of the leader

Let pd(t)z[pf (1), pf(t)]T be a virtual moving
point on a desired trajectory. If the coordinate in X-
direction is the function of time, i.e., pf =),

the smooth path is expressed as an algebraic cubic
n
: d d j
spline, py (1)=2 a;(p; ).
i=0

Since the desired trajectory should be at least C!
to apply local control strategy, not only position
boundary conditions, but also velocity boundary
conditions should be applied.

d / d
pi) =P  pp=P7,
dpﬂ _ olo dpy _g'r
@l T g ’
* =y, =ty

where [fy,¢,] represents the interval for the movihg

point from the start time of path planning to the end

time of reaching destination; 6 represents the
heading angle of R, at the moment for new path
planning. Therefore between two successive times of
path planning, the path generated in the latter path
planning must continue the former path smoothly. And

the whole desired trajectory is ensured as C'.

If only the boundary condition is considered, a
three-order polynomial trajectory function can be
chosen. To avoid moving obstacles, a five-order
polynomial for path planning is chosen as

5 .
Pl = a(ply. (39)
i=l

There are six parameters g, to as to be determined.
According to the boundary conditions, only two of
them are free parameters, and the other four
parameters can be expressed by these two.

5.2. Path planning via PSO algorithm
5.2.1 PSO algorithm

Obviously each particle in a swarm represents a
solution on path planning. In following analysis, we
will introduce the meaning of each particle and the
algorithm of PSO path planning.

Let § denote the size of the swarm. For an arbitrary
particle i, its current position is denoted by

&=1& &n &1, where L is the dimension of
the solution space, and its current velocity is denoted
by v;. Assume that the function F(+) is to be
minimized, »n ~U (O,I)L and r ~U(0, l)L represent

the two random vectors in the range of [O,I]L. To

ensure convergence, the adjustment of particle with a
constriction factor [21] is expressed as

vi(t+1)=K, {Vi(f)+cl’”li(t)[)/l' — i (t)J
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+ear O ¥ - &) |l
sit+D =g () +v; (1 +1),

where ¢, and ¢, represent the acceleration coefficients
satisfying with ¢=c, +¢c,, ¢>4; Y, represents the

(40)

best position found by particle i so far; Y# represents

i
the global best position among particle i’s
neighborhood; the constriction factor K. is defined as

K. =2|2-g- g 49

The best position recorded is updated by

Y (1),  Flg(t+D))2 F(L;(1)
G(t+1), F(g(t+D)<F(Y(0))

Yi(t+1)={ (41)

And the global best position found by particlei ’s
neighborhood is modified by

YE(t +1) = arg min F(Y;(t+1)), (42)
Jelt;

where TII; represents the neighbors of particle .

5.2.2 Fitness evaluation
The goal of a PSO is to minimize a fitness function
F()). For path planning, two requirements should be

considered in fitness function: (i) Arriving at
destination along the trajectory as soon as possible;
(ii) Avoiding obstacles.

1) Fitness with respect to trajectory’s length.

Instead of a direct measurement of path length,
another fitness function is chosen. If the X-axis of the
universal reference frame is along the beeline
connecting the leader and the destination, the fitness
function can be expressed as

d
Py (17)
Frat = [ (py) dpt (43)
P (t0)

It reflects the intention that the desired trajectory
should be as close as possible to the beeline
connecting two ends of the trajectory.

2) Fitness with respect to obstacle avoidance.

To avoid obstacles, the shortest distance between
obstacles and robots during the whole process should
be larger than a critical or safety threshold. If we

define such a threshold as peﬁ , andlet Q and ¥

represent the set of robots and the set of obstacles
perceived by R, respectively, then this intention can be

expressed as V¢, VieQ, Vje¥, min{p;}z peﬂ,
where p; represents the distance between robot i

min

and obstacle j. Ifletp;™ = min{ pij}, an evaluation

function for obstacle avoidance is designed as

A moving
obstacle .~

Fig. 8. A snapshot of two virtual robots at time £, .

1 1 min eﬁ
Fobstacle pmin peﬂ ), P i < pj
! ) ' ) (44)
0, p;nzn > p]eﬁ_

Therefore the key point is to find out p;?’i”. Fig. 8

illustrates how to find such a distance, where there are
two trajectories denoted by lines (1) and (2), which
are designed for two robots forming a formation. Then
the minimal distance between an obstacle and robots
equals the minimal distance between the obstacle and
all trajectories. A critical point is defined such that a
beeline through obstacle position intersects with the
trajectory perpendicularly on it. Then if we find this

min

critical point, ;™" also be calculated.

Given an obstacle m as shown in Fig. 8, since the
path designed for the leader R, is the function of time,
according to the formation pattern, the path of the
follower R, is also expressed as the function of time.
It is assumed that two moving points denoted by two
virtual robots follow trajectories (1) and (2) generated
by the PSO path planning. we draw two
perpendiculars (denoted by dashed lines) with the
same slope passing through the positions of robots
respectively, and draw two connect lines connecting
robots with the obstacle m respectively. If a robot is at
the critical point, the connecting line must coincide
with the perpendicular there. Therefore a fitness
function on evaluating critical point is expressed as

2
. , 45
e

where jeW, l}c =[p§1 P?z]T» and PJO =[PJO'1 p?Z]T

o c d

FJ{:rosspoznt =1+ ’ L z
Pjix—Pjx dpx

represent the coordinates of critical point and obstacle
respectively.

If there are M obstacles, the fitness function in PSO
for path planning is in the form of

F=a- Fpath +, - %F;crosspoint +ay- AZ1:F;obstacle, (46)

i=l i=1
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where @ to @; represent positive weights.

5.2.3 Description of particles in swarm

Based on the analysis, the dimension of solution
space can be determined. Firstly as and a; are chosen
as free parameters in order to describe a desired
trajectory. And for every obstacle perceived by R, we
need to find the critical point. If a desired trajectory is
described as a function of time, the critical point for

obstacle j is also a function of time ch. Therefore

if we assume that R, can handle M obstacles at the
same time, the position of a particle is in the form of

§=las a3 T Ty 1.
6. SIMULATION

To illustrate the feasibility of the design of
formation navigation, a simulation is carried out in
which six robots maintain a rectangle formation.
Some assumptions on the environment and parameters
used in the navigation are listed below:

1) There are four obstacles. A static obstacle is
located at (2.5m, 0.1m). And other three obstacles
are moving, which are located initially at (3.5m,
0.55m), (3.7m, —0.45m), and (6m, 0.55m) . The

velocities of the obstacles are (0m/s, —0.014m/s),
(0.025m/s, 0.012m/s) and (—0.012m/s,— 0.02m/s)

respectively.

2) All obstacles are a kind of disc-like with radius
0.15m.

3) R, is the leader of the formation, which is required
to reach (7m, Om) with a heading angle of Orad,
while all six robots are keeping rectangle
formation whose pattern is shown in Fig. 1.

4) Considering the size of robots, the distance for
safe obstacle avoidance is chosen as 0.05m. Since
an obstacle is a disc-like with radius 0.15m, the
safe range is a disc with radius 0.2m.

5) R;handles two obstacles at one time.

Other parameters such as the size of robot and
control parameters are the same as the previous
simulation. The results of simulation are displayed in
Figs. 9 and 10. To describe the movements of
obstacles, the initial positions and final positions of
obstacles are denoted by black circles, while arrows
passing through them denote their moving direction.
The four grey discs denote the nearest positions where
robots are away from obstacles. At these locations, the
red circles around the discs represent the safety ranges
of obstacles. Obviously, no trajectory of robots passes
through any safety range, so that the minimum
distance between any robot and any obstacle must be
no less than 0.05m, and the robot must avoid the
obstacle.

Since R; only handles the two nearest obstacles at

one time of path planning, for all four obstacles, three
times of path planning are needed. Counting the
duration to form formation firstly, the process of
formation is divided into four sections, denoted by (1)
to (4) in Fig. 9(a). When R,’s coordinates in X-
direction are 1.52m, 3.36m, and 4.62m, the formation
executes three times of path planning.

According to the description of particles in swarm,
it is known that £=[as a3 T T5). Since as
and a; determine the polynomial of path, Fig. 10
displays the evolutionary processes about these two
parameters in the second and the third times of path
planning, where the obstacles involved are all moving
obstacles. From the figure, it is observed that in every
planning, all particles converge. If the desired velocity
along X-direction of R, is predetermined as

pf(t)=0.2t, the polynomials of paths after three

times of path planning are:
1) Duration ¢e(7.75,16.8s]:

Pl (6)=8.10x107F ~8.80x107r* +3.52x107F
—6.31x107*#2 +0.00497 - 0.0137;
2) Duration t<(16.8s,23.1s]:

P30 =-5.02x10"F +6.77x10°%+* -3.57x107F
+0.0091¢% — 0.1135¢ +0.5442;

3) Duration fe(23.1s,35s]:

P, ()=-5.76x107% +9.30x1070+* —5.87x107*¢
+0.0182¢% —0.2748¢ +1.6325.

When obstacles truncate interactions between
robots, robots have no choices but try to communicate
with other robots to set up new reference points. This
induces a change of interaction topology. In the
simulation, thirty times of such changes are recorded.
Fig. 9(b) shows some topologies in simulation.
Topology (1) indicates the situation at the beginning
which is generated arbitrarily. The first change occurs
during the formation passing obstacle 1, where the
obstacle blocks the interaction between R; and R,. R,
abandons interaction with R; and totally turns to R4 to
set up the reference point. This change is illustrated in
Fig. 9(b), where arc a(2, 1) is disappeared in
interaction topology (2), with a(2, 4) remained. So the
second row of adjacency matrix G is changed from
[0.5000.500]to [0 0010 0]. Since these changes
of adjacency matrix occurs after the formation formed.
the leaps of errors are too small to be observed in the
first six figures of Fig. 9(c). But if the relative error of
R4 is magnified, through observing the region around
17.5s shown in the seventh subfigure of Fig. 9(c), we
can find two leaps of error corresponding to two times
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Fig. 9. Simulation results of formation navigation.
. Convergence of X, (@) 1o Convergenc of X, 2,) of interaction changes of R,;, when R4 avoids obstacle

1, its reference robot is changed from R, to R;, and
from R to R,, respectively.

Value
Value

7. EXPERIMENTAL STUDIES

+
An experiment study is conducted in our lab to
I R R VN T C verify this formation navigation. Up to now we have
designed and manufactured a group of robots as
shown in Fig. 11. All robots can acquire the
) information about their relative positions using lights
and photosensors.

Each individual robot has been designed as a full
autonomous mobile robot, on which a Microchip
pIC® microprocessor is mounted. Other necessary
devices, such as communication parts, memory chips
are all included. According to the mechanical design,
the robot is constructed by 4 units, or layers from the

(a) Convergence of the swarm for the 2nd path planning.

Convergence of X, (as) Convergenc of X, (a3
1

05

Value
Value

0% 250 500 750 1000 % 250 500 750 1000 . N L A
Time (feration) Time (ieration) top to the bottom: 1) interaction unit including the
(b) Convergence of the swarm for the 3rd path planning. lights and photo sensors, which is mounted on the top

layer, 2) extended board on the second layer, which
Fig. 10. Evolution processes for two path planning. will extend ability of input and output channels, 3)
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Fig. 11. The prototype of the multi-robot formation.

control unit on the third layer, which includes CPU,
4096 bytes of user program and data memory, and IR
transceivers for communication with PC, 4) power
source and actuator unit on the bottom layer, which
include two separated battery units and two servo
motors with gear boxes. The system architecture is
finally shown in Fig. 12.

The following two layers of the architecture are
described as follows.

1) Interaction unit

All lights mounted on robots are surrounded by
light tight material, so that directional light cones are
generated. Accordingly on the top layer there are
several photo sensors which can perceive light from
specific directions. Robots can perceive the beams to
detect their reference position. Therefore the
arrangement of lights and photo sensors determine the
formation pattern. Till now the lights and photo
sensors are fixed on the first layer, so that an invariant
formation pattern can be generated, such as the
formation of wild goose.

2) Power source and actuator

To avoid current disturbance resulting from action

Photosenser 1 @

_ () |Light 1
]
Photosenser 2 @ 1-| E‘> ® Light 2

l Extended Board ‘

IR Transceiver

CPU Memory
( (Microchip PIC) (40968)

Actuator Unit

Fig. 12. The mechanical architecture of a robot.

Left Motor Right Motor

of actuator, which make power supply to the control
board be unstable, the two separated 6V battery units
are employed to provide power to the control unit and
drive motors respectively. And the actuator unit
includes two servo motors, which drive two wheels
through a gear box with reduction ratio of 203:1.

Using this prototype, we have tested that when the
robots are put together, they can perceive their leaders
and compute the relative positions according to the
intension of lights. In the near future the close-loop
control law will be applied to the robots to test the
formation performance. And finally the NN control
will be added into the controller to verify the
feasibility of the control strategy.

8. CONCLUSIONS

A formation navigation algorithm for a group of
mobile robots is proposed in this paper, which can
achieve formation navigation in case of moving
obstacles existed. If formation pattern is C', the whole
system is smooth continuous. Then the adaptive NN
control can be applied to enable mobile robots follow
a predetermined leader and form a formation. A PSO
path planning method is proposed to generate
successive paths for the leader of formation according
to current obstacles perceived, and ensures that the
path resulting from connection of these paths is
smooth. Hence the precondition of C' formation
pattern is fulfilled. Simulation results demonstrate the
algorithm is effective for formation navigation of
multiple robots with moving obstacles.
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