• 제목/요약/키워드: cAMP response element binding protein

검색결과 86건 처리시간 0.027초

Phenolic acids in Panax ginseng inhibit melanin production through bidirectional regulation of melanin synthase transcription via different signaling pathways

  • Jianzeng Liu ;Xiaohao Xu ;Jingyuan Zhou;Guang Sun ;Zhenzhuo Li;Lu Zhai ;Jing Wang ;Rui Ma ;Daqing Zhao;Rui Jiang ;Liwei Sun
    • Journal of Ginseng Research
    • /
    • 제47권6호
    • /
    • pp.714-725
    • /
    • 2023
  • Background: Our previous investigation indicated that the preparation of Panax ginseng Meyer (P. ginseng) inhibited melanogenesis. It comprised salicylic acid (SA), protocatechuic acid (PA), p-coumaric acid (p-CA), vanillic acid (VA), and caffeic acid (CA). In this investigation, the regulatory effects of P. ginseng phenolic acid monomers on melanin production were assessed. Methods: In vitro and in vivo impact of phenolic acid monomers were assessed. Results: SA, PA, p-CA and VA inhibited tyrosinase (TYR) to reduce melanin production, whereas CA had the opposite effects. SA, PA, p-CA and VA significantly downregulated the melanocortin 1 receptor (MC1R), cycle AMP (cAMP), protein kinase A (PKA), cycle AMP-response element-binding protein (CREB), microphthalmia-associated transcription factor (MITF) pathway, reducing mRNA and protein levels of TYR, tyrosinase-related protein 1 (TYRP1), and TYRP2. Moreover, CA treatment enhanced the cAMP, PKA, and CREB pathways to promote MITF mRNA level and phosphorylation. It also alleviated MITF protein level in α-MSH-stimulated B16F10 cells, comparable to untreated B16F10, increasing the expression of phosphorylation glycogen synthase kinase 3β (p-GSK3β), β-catenin, p-ERK/ERK, and p-p38/p38. Furthermore, the GSK3β inhibitor promoted p-GSK3β and p-MITF expression, as observed in CA-treated cells. Moreover, p38 and ERK inhibitors inhibited CA-stimulated p-p38/p38, p-ERK/ERK, and p-MITF increase, which had negative binding energies with MC1R, as depicted by molecular docking. Conclusion: P. ginseng roots' phenolic acid monomers can safely inhibit melanin production by bidirectionally regulating melanin synthase transcription. Furthermore, they reduced MITF expression via MC1R/cAMP/PKA signaling pathway and enhanced MITF post-translational modification via Wnt/mitogen-activated protein kinase signaling pathway.

The Memory-Enhancing Effects of Liquiritigenin by Activation of NMDA Receptors and the CREB Signaling Pathway in Mice

  • Ko, Yong-Hyun;Kwon, Seung-Hwan;Hwang, Ji-Young;Kim, Kyung-In;Seo, Jee-Yeon;Nguyen, Thi-Lien;Lee, Seok-Yong;Kim, Hyoung-Chun;Jang, Choon-Gon
    • Biomolecules & Therapeutics
    • /
    • 제26권2호
    • /
    • pp.109-114
    • /
    • 2018
  • Liquiritigenin (LQ) is a flavonoid that can be isolated from Glycyrrhiza radix. It is frequently used as a tranditional oriental medicine herbal treatment for swelling and injury and for detoxification. However, the effects of LQ on cognitive function have not been fully explored. In this study, we evaluated the memory-enhancing effects of LQ and the underlying mechanisms with a focus on the N-methyl-D-aspartic acid receptor (NMDAR) in mice. Learning and memory ability were evaluated with the Y-maze and passive avoidance tests following administration of LQ. In addition, the expression of NMDAR subunits 1, 2A, and 2B; postsynaptic density-95 (PSD-95); phosphorylation of $Ca^{2+}$/calmodulin-dependent protein kinase II (CaMKII); phosphorylation of extracellular signal-regulated kinase 1/2 (ERK 1/2); and phosphorylation of cAMP response element binding (CREB) proteins were examined by Western blot. In vivo, we found that treatment with LQ significantly improved memory performance in both behavioral tests. In vitro, LQ significantly increased NMDARs in the hippocampus. Furthermore, LQ significantly increased PSD-95 expression as well as CaMKII, ERK, and CREB phosphorylation in the hippocampus. Taken together, our results suggest that LQ has cognition enhancing activities and that these effects are mediated, in part, by activation of the NMDAR and CREB signaling pathways.

위선암종에서 핵의 Retinoic Acid Receptor (RAR) 및 cAMP Response Element Binding Protein (CREB)의 면역조직화학적 발현양상 (The Immunohistochemical Expression of Nuclear Retinoid Receptor and CREB in Gastric Adenocarcinoma)

  • 한호선;김용석;박중민;최유신;차성재;김미경;지경천
    • Journal of Gastric Cancer
    • /
    • 제8권4호
    • /
    • pp.182-188
    • /
    • 2008
  • 목적: 인체 내 여러 조직에서 상피세포의 분화 및 증식에 중요한 역할을 담당한다고 알려진 retinoic acid (RA)와 여러 유전자들에서 전사조절인자로 성장관여 유전자들의 활성화에 관여하며 세포증식 및 분화에 매우 중요한 세포내 조절인자인 CREB의 발현정도와 위선암종간의 상호 연관성 및 병리학적 인자들과의 관계를 관찰하였다. 대상 및 방법: 중앙대학교 의과대학 용산병원에서 1998년 1월부터 2007년 12월까지 위절제술을 시행 받고 위선암종으로 진단받은 환자의 위조직표본 중 보존상태가 양호한 파라핀 포매괴 150예를 연구대상으로 조직 표본에서 면역 조직화학적 염색을 통해 관찰하였다. 결과: 1. RAR의 발현은 장형 위선암종(72.2%)에서 미만형 위선암종(40.5%)보다 높게 나타났으며(P<0.01), 림프절 전이가 있는 경우(74.7%)가 림프절 전이가 없는 경우(49.2%)보다 의미 있는 발현양상을 나타냈다(P<0.01). 2. cAMP response element binding protein (CREB)의 발현은 장형 위선암종(69.4%)에서 미만형 위선암종(38.1%)보다 높게 나타났으며(P<0.01), 림프절 전이가 있는 경우(71.1%)가 림프절 전이가 없는 경우(47.8%)보다 높은 발현양상을 나타냈다(P<0.01). 3. 총 150예의 위선암종에서 RAR은 63.3% (95/150), CREB은 60.7%(91/150)에서 발현을 나타냈다(P<0.01). 결론: 이상의 결과로 RAR과 CREB은 조직학적 분화도 및 종양의 전이와 관련이 있고, 이들의 발현이 장형 위선암종에서의 생물학적 악성도에 관한 예후인자로서 관련이 있으나 이들의 발현이 위선암종에 미치는 생물학적 기전에 대한 추가 연구가 필요하다.

  • PDF

인삼의 마약중독 해독효과 (Antinarcotic Effect of Ginseng)

  • 오세관
    • Journal of Ginseng Research
    • /
    • 제32권1호
    • /
    • pp.1-7
    • /
    • 2008
  • Ginseng saponin has been shown to inhibit the development of dependence on morphine, cocaine, methamphetamine, but the antinarcotics effects of ginseng on nalbuphine remains still largely unknown. Ginseng administration attenuated the naloxone-induced jumping behavior on nalbuphine dependent mice. The development of morphine dependence was mediated through ${\mu}-opioid$ receptor, however, development of nalbuphine dependence was mediated through ${\kappa}-opioid$ receptor. However, it was found that the efficacy of analgesic antagonism of GTS was mediated through the serotonergic mechanism, not mediated through the opioid receptor. In addition, ginseng administration modulated cellular signal transduction in the brain. The increased NMDA receptor subunit (NR1, pNR1), phosphate extracellular signal regulated protein kinase (pERK), phosphate cAMP response element binding protein (pCREB) expression by nalbuphine was decreased by the administration of ginseng powder in cortex, hippocampus, striatum of rat brain. These results suggest that ginseng could be one of the targets of antinarcotic therapies to reduce the development of tolerance and dependence on nalbuphine as well as morphine.

Genistein attenuates isoflurane-induced neurotoxicity and improves impaired spatial learning and memory by regulating cAMP/CREB and BDNF-TrkB-PI3K/Akt signaling

  • Jiang, Tao;Wang, Xiu-qin;Ding, Chuan;Du, Xue-lian
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제21권6호
    • /
    • pp.579-589
    • /
    • 2017
  • Anesthetics are used extensively in surgeries and related procedures to prevent pain. However, there is some concern regarding neuronal degeneration and cognitive deficits arising from regular anesthetic exposure. Recent studies have indicated that brain-derived neurotrophic factor (BDNF) and cyclic AMP response element-binding protein (CREB) are involved in learning and memory processes. Genistein, a plant-derived isoflavone, has been shown to exhibit neuroprotective effects. The present study was performed to examine the protective effect of genistein against isoflurane-induced neurotoxicity in rats. Neonatal rats were exposed to isoflurane (0.75%, 6 hours) on postnatal day 7 (P7). Separate groups of rat pups were orally administered genistein at doses of 20, 40, or 80 mg/kg body weight from P3 to P15 and then exposed to isoflurane anesthesia on P7. Neuronal apoptosis was detected by TUNEL assay and FluoroJade B staining following isoflurane exposure. Genistein significantly reduced apoptosis in the hippocampus, reduced the expression of proapoptotic factors (Bad, Bax, and cleaved caspase-3), and increased the expression of Bcl-2 and Bcl-xL. RT-PCR analysis revealed enhanced BDNF and TrkB mRNA levels. Genistein effectively upregulated cAMP levels and phosphorylation of CREB and TrkB, leading to activation of cAMP/CREB-BDNF-TrkB signaling. PI3K/Akt signaling was also significantly activated. Genistein administration improved general behavior and enhanced learning and memory in the rats. These observations suggest that genistein exerts neuroprotective effects by suppressing isoflurane-induced neuronal apoptosis and by activating cAMP/CREB-BDNF-TrkB-PI3/Akt signaling.

폐암종에서 Nuclear Retinoid Receptor 및 CREB의 면역조직화학적 발현 양상 (Immunohistochemical Expression of Nuclear Retinoid Receptor and CREB(cAMP Response Element Binding Protein) in Lung Cancers)

  • 신종욱;기승석;백광현;최원;박인원;김미경
    • Tuberculosis and Respiratory Diseases
    • /
    • 제59권6호
    • /
    • pp.631-637
    • /
    • 2005
  • 배 경 : 폐를 포함한 인체내 여러 조직에서 상피세포의 분화 및 증식에 중요한 역할을 담당한다고 알려진 Retinoid acid(RA)와 여러 유전자들에서 전사조절인자로 성장관여 유전자들의 활성화에 관여하며 세포증식 및 분화에 매우 중요한 세포내 조절인자인 cAMP response-element binding protein(CREB)의 폐암종에서의 발현정도를 알아보고 조직학적 차이에 따른 발현도를 비교분석하여 발암과정에서의 관여여부와 역할을 파악하고자 하였다. 방 법 : 중앙대학교 의과대학 부속병원에서 최근 10년간 시행한 기관지내시경 및 흉부외과적 적출을 통해 얻어진 폐암종 조직중 파라핀 포매의 보관상태가 양호한 120예(선암종 60예, 편평세포암종 60예)를 연구대상으로 면역조직화학적 염색을 시행하였다. 결 과 : RAR과 CREB 모두 편평세포암종에 비해 선암종에서 발현이 의의있게 높았고(P<0.05) 선암종에서는 조직학적으로 분화도가 좋을수록 높은 발현율을 보였다(P<0.01). 총 120예의 폐암종에서 RAR과 CREB의 발현을 비교하면 65.8%의 동시발현율을 나타냈다(P<0.05) 결 론 : RAR과 CREB은 폐조직에서 점액상피세포의 분화와 상관관계가 있으며 편평세포암종보다는 선암종의 발암과정에서 일부 의미있는 역할을 수행하리라 생각되었다. 또한 RAR과 CREB의 발현부위도 통계적으로 의미 있는 일치양상을 나타내어 이들은 서로 상호작용에 의해 발암과정 중 일부 역할을 수행하리라 생각된다.

Effects of Dopamine and Haloperidol on Morphine-induced CREB and AP-1 DNA Binding Activities in Differentiated SH-SY5Y Human Neuroblastoma Cells

  • Kim, Soo-Kyung;Kwon, Gee-Youn
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제2권6호
    • /
    • pp.671-676
    • /
    • 1998
  • In the present study, we first examined whether the changes in the DNA binding activities of the transcription factors, cAMP response element binding protein (CREB) and activator protein-1 (AP-1) mediate the long-term effects of morphine in differentiated SH-SY5Y human neuroblastoma cells. The increases in CREB and AP-1 DNA binding activities were time-dependent up to 6 days of morphine treatment (1, 4, and 6 days). However, the significant reduction in the DNA binding activities of CREB and AP-1 was observed after 10 days of chronic morphine $(10\;{\mu}M)$ administration. Secondly, we examined whether the changes of CREB and AP-1 DNA binding activities could be modulated by dopamine and haloperidol. Dopamine cotreatment moderately increased the levels of the CREB and AP-1 DNA binding activities induced by 10 days of chronic morphine treatment, and haloperidol cotreatment also resulted in a moderate increase of the CREB and AP-1 DNA binding activities. However, dopamine or haloperidol only treatment showed a significant increase or decrease of the CREB and AP-1 DNA binding activities, respectively. In the case of acute morphine treatment, the CREB and AP-1 DNA binding activities were shown to decrease in a time-dependent manner (30, 60, 90, and 120 min). Taken these together, in differentiated SH-SY5Y cells, morphine tolerance seems to involve simultaneous changes of the CREB and AP-1 DNA binding activities. Our data also suggest the possible involvement of haloperidol in prevention or reversal of morphine tolerance at the transcriptional level.

  • PDF

cAMP-response Element-binding Protein Is not Essential for Osteoclastogenesis Induced by Receptor Activator of NF-${\kappa}B$ Ligand

  • Kim, Ha-Neui;Ha, Hyun-Il;Lee, Jong-Ho;Kwak, Han-Bok;Kim, Hong-Hee;Lee, Zang-Hee
    • International Journal of Oral Biology
    • /
    • 제30권4호
    • /
    • pp.143-148
    • /
    • 2005
  • Osteoclasts are multinucleated cells with bone resorbing activity and differentiated from hematopoietic cell lineages of monocyte/macrophages in the presence of receptor activator of NF-${\kappa}B$ ligand (RANKL) and M-CSF. However, the exact molecular mechanisms through which RANKL stimulates osteoclastogenesis remain to be elucidated. Here we report that activation of cAMP-response elementbinding protein (CREB) is not involved in osteoclastogenesis from osteoclast precursors in response to RANKL. RANKL induced CREB activation in osteoclast precursors. Using pharmacological inhibitors, we found that RANKL-induced CREB activation is dependent on p38 MAPK pathways. We also found that ectopic expressions of wild type and dominant negative forms of CREB in osteoclast precursors did not affect RANKL-induced osteoclast formation and bone resorbing activity. Furthermore, dominant negative forms of CREB did not alter the expression levels of osteoclast-specific marker genes. Taken together, these data suggest that CREB is dispensable for differentiation and resorbing activity of osteoclasts.

B16F10 멜라닌 세포에서 신규 헥사펩타이드의 MITF 조절을 통한 멜라닌 생성 저해 효과 (Inhibitory Effects of Novel Hexapeptide on Melanogenesis by Regulating MITF in B16F10 Melanoma Cells)

  • 이응지;김잔디;정민경;이영민;정용지;김은미
    • 대한화장품학회지
    • /
    • 제46권1호
    • /
    • pp.11-22
    • /
    • 2020
  • 본 연구에서는 6 개의 아미노산으로 이루어진 헥사펩타이드(hexapeptide)의 미백 효능에 대해 수행하였다. 실험 결과 헥사펩타이드 처리에 의해 유의한 수준의 멜라닌 생성 저해가 관찰 되었고, 멜라닌 생성 과정에 관여하는 주요 효소인 tyrosinase의 활성이 농도 의존적으로 억제됨이 관찰 되었다. 멜라닌 생성 관련 인자들의 발현을 관찰 한 결과 tyrosinase (TYR), tyrosinase-related protein 1 (TYRP1) 및 이들의 상위 전사인자인 microphthalmia-associated transcription factor (MITF)의 발현이 헥사펩타이드 처리에 의해 유의한 수준으로 저해 되었다. 또한 헥사펩타이드 처리에 의해 MITF 발현을 조절하는 상위 전사인자인 cAMP-response element binding protein (CREB)의 인산화가 저해 되었고 MITF 인산화를 통해 프로테아좀 분해(proteasomal degradation)를 유도하는 extracellular signal-regulated kinase (ERK) 인산화가 증가 되었다. 이외에도, 멜라노좀의 세포 내 이동에 관여하는 복합체의 구성 인자들로 알려진 Rab27A, melanophilin, myosinVa의 발현도 헥사펩타이드에 의해 유의한 수준으로 저해 되었다. 이 결과를 통해, 본 연구의 헥사펩타이드는 멜라닌세포의 멜라닌 생성 관련 핵심 전사인자인 MITF의 발현 및 분해 조절을 통해 멜라닌 생성 억제 및 멜라노좀 이동과 같은 전반적인 멜라노좀 성숙 과정에 저해 효과를 나타내는 것으로 보인다. 헥사펩타이드의 이러한 미백 효능은 신규 미백 기능성 화장품 소재로 응용될 수 있을 것으로 기대된다.

Memory allocation at the neuronal and synaptic levels

  • HyoJin Park;Bong-Kiun Kaang
    • BMB Reports
    • /
    • 제57권4호
    • /
    • pp.176-181
    • /
    • 2024
  • Memory allocation, which determines where memories are stored in specific neurons or synapses, has consistently been demonstrated to occur via specific mechanisms. Neuronal allocation studies have focused on the activated population of neurons and have shown that increased excitability via cAMP response element-binding protein (CREB) induces a bias toward memory-encoding neurons. Synaptic allocation suggests that synaptic tagging enables memory to be mediated through different synaptic strengthening mechanisms, even within a single neuron. In this review, we summarize the fundamental concepts of memory allocation at the neuronal and synaptic levels and discuss their potential interrelationships.