Browse > Article
http://dx.doi.org/10.15230/SCSK.2020.46.1.11

Inhibitory Effects of Novel Hexapeptide on Melanogenesis by Regulating MITF in B16F10 Melanoma Cells  

Lee, Eung Ji (Department of Chemistry and Cosmetics, Jeju National University)
Kim, Jandi (Department of Chemistry and Cosmetics, Jeju National University)
Jeong, Min Kyeong (Department of Chemistry and Cosmetics, Jeju National University)
Lee, Young Min (Department of Chemistry and Cosmetics, Jeju National University)
Chung, Yong Ji (Department of Chemistry and Cosmetics, Jeju National University)
Kim, Eun Mi (Department of Chemistry and Cosmetics, Jeju National University)
Publication Information
Journal of the Society of Cosmetic Scientists of Korea / v.46, no.1, 2020 , pp. 11-22 More about this Journal
Abstract
In this study, we investigated anti-pigmentation effect of a hexapeptide. The peptide significantly reduced melanin contents and inhibited tyrosinase activity in a dose-dependent manner, in which tyrosinase is a key enzyme in melanogenesis. The peptide also significantly reduced the expression levels of tyrosinase (TYR), tyrosinase-related protein 1 (TYRP1) and their upstream transcription factor, microphthalmia-associated transcription factor (MITF). Furthermore, the peptide suppressed the phosphorylation level of cAMP-response element binding protein (CREB), a transcription factor of MITF, and increased the phosphorylation level of extracellular signal-regulated kinase (ERK), a kinase mediates MITF phosphorylation and proteasomal degradation. The peptide significantly inhibited the expression of Rab27A, Melanophilin, and MyosinVa, the components of motor complex involved in intracellular movement of melanosome. These results suggest that Hexapeptide could be used as an effective whitening agent that has inhibitory effect on melanin production and melanosome transport by regulating expression and degradation of MITF in melanocytes.
Keywords
hexapeptide; MITF; melanogenesis; melanosome transport; pigmentation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 T. Hirobe, Keratinocytes regulate the function of melanocytes, Dermatologica Sinica, 32(4), 200 (2014).   DOI
2 A. Hachiya, A. Kobayashi, A. Ohuchi, Y. Takema, and G. Imokawa, The paracrine role of stem cell factor/c-kit signaling in the activation of human melanocytes in ultraviolet-B-induced pigmentation, J. Invest. Dermatol., 116(4), 578 (2001).   DOI
3 T. Hirobe, K. Hasegawa, R. Furuya, R. Fujiwara, and K. Sato, Effects of fibroblast-derived factors on the proliferation and differentiation of human melanocytes in culture, J. Dermatol. Sci, 71(1), 45 (2013).   DOI
4 E. Schauer, F. Trautinger, A. Kock, A. Schwarz, R. Bhardwaj, M. Simon, J.C. Ansel, T. Schwarz, and T. A. Luger, Proopiomelanocortin-derived peptides are synthesized and released by human keratinocytes, J. Clin. Invest., 93(5), 2258 (1994).   DOI
5 A. K. Chakraborty, Y. Funasaka, A. Slominski, G. Ermak, J. Hwang, J. M. Pawelek, and M. Ichihashi, Production and release of proopiomelanocortin (POMC) derived peptides by human melanocytes and keratinocytes in culture: regulation by ultraviolet B, Biochim. Biophys. Acta, 1313(2), 130 (1996).   DOI
6 M. Khaled, L. Larribere, K. Bille, E. Aberdam, J. P. Ortonne, R. Ballotti, and C. Bertolotto, Glycogen synthase kinase 3beta is activated by cAMP and plays an active role in the regulation of melanogenesis, J. Biol. Chem., 277(37), 33690 (2002).   DOI
7 K. Wakamatsu, A. Graham, D. Cook, and A. J. Thody, Characterisation of ACTH peptides in human skin and their activation of the melanocortin-1 receptor, Pigment Cell Res., 10(5), 288 (1997).   DOI
8 G. Imokawa, Autocrine and paracrine regulation of melanocytes in human skin and in pigmentary disorders, Pigment Cell Res., 17(2), 96 (2004).   DOI
9 A. Chakraborty, A. Slominski, G. Ermak, J. Hwang, and J. Pawelek, Ultraviolet B and melanocyte-stimulating hormone (MSH) stimulate mRNA production for alpha MSH receptors and proopiomelanocortin-derived peptides in mouse melanoma cells and transformed keratinocytes, J. Invest. Dermatol., 105(5), 655 (1995).   DOI
10 Y. M. Kim, S. E. Cho, and Y. K. Seo, The activation of melanogenesis by p-CREB and MITF signaling with extremely low-frequency electromagnetic fields on B16F10 melanoma, Life Sci., 162, 25 (2016).   DOI
11 K. Kameyama, C. Sakai, S. Kuge, S. Nishiyama, Y. Tomita, S. Ito, K. Wakamatsu, and V. J. Hearing, The expression of tyrosinase, tyrosinase-related proteins 1 and 2 (TRP1 and TRP2), the silver protein, and a melanogenic inhibitor in human melanoma cells of differing melanogenic activities, Pigment Cell Res., 8(2), 97 (1995).   DOI
12 G. Raposo, and M. S. Marks, Melanosomes-dark organelles enlighten endosomal membrane transport, Nat. Rev. Mol. Cell Biol., 8(10), 786 (2007).   DOI
13 J. I. Park, H. Y. Lee, J. E. Lee, C. H. Myung, and J. S. Hwang, Inhibitory effect of 2-methyl-naphtho [1,2,3-de]quinolin-8-one on melanosome transport and skin pigmentation, Sci Rep, 6, 29189 (2016).   DOI
14 L. D'Alba and M. D. Shawkey, Melanosomes: biogenesis, properties, and evolution of an ancient organelle, Physiol. Rev., 99(1), 1 (2019).   DOI
15 M. Van Gele, B. Geusens, A. M. Schmitt, L. Aguilar, and J. Lambert, Knockdown of myosin Va isoforms by RNAi as a tool to block melanosome transport in primary human melanocytes, J. Invest. Dermatol., 128(10), 2474 (2008).   DOI
16 N. Ohbayashi and M. Fukuda, Role of Rab family GTPases and their effectors in melanosomal logistics, J. Biochem., 151(4), 343 (2012).   DOI
17 G. Cardinali, S. Ceccarelli, D. Kovacs, N. Aspite, L. V. Lotti, M. R. Torrisi, and M. Picardo, Keratinocyte growth factor promotes melanosome transfer to keratinocytes, J. Invest. Dermatol., 125(6), 1190 (2005).   DOI
18 J. H. Epstein, Photocarcinogenesis, skin cancer, and aging, J. Am. Acad. Dermatol., 9(4), 4 87 ( 1983 ).   DOI
19 R. Speeckaert, M. Van Gele, M. M. Speeckaert, J. Lambert, and N. van Geel, The biology of hyperpigmentation syndromes, Pigment Cell Melanoma Res, 27(4), 512 (2014).   DOI
20 M. B. C. Maymone, H. H. Neamah, E. A. Secemsky, and N. A. Vashi, Correlating the dermatology life quality index and skin discoloration impact evaluation questionnaire tools in disorders of hyperpigmentation, J. Dermatol., 45(3), 361 (2018).   DOI
21 T. Pillaiyar, M. Manickam, and V. Namasivayam, Skin whitening agents: medicinal chemistry perspective of tyrosinase inhibitors, J Enzyme Inhib Med Chem, 32(1), 403 (2017).   DOI
22 M. L. W. Juhasz and M. K. Levin, The role of systemic treatments for skin lightening, J Cosmet Dermatol, 17(6), 1144 (2018).   DOI
23 L. Zhang and T. J. Falla, Cosmeceuticals and peptides, Clin. Dermatol., 27(5), 485 (2009).   DOI
24 B. Reddy, T. Jow, and B. M. Hantash, Bioactive oligopeptides in dermatology: Part I, Exp. Dermatol., 21(8), 563 (2012).   DOI
25 B. Reddy, T. Jow, and B. M. Hantash, Bioactive oligopeptides in dermatology: Part II, Exp. Dermatol., 21(8), 569 (2012).   DOI
26 A. A. Strömstedt, M. Pasupuleti, A. Schmidtchen, and M. Malmsten, Evaluation of strategies for improving proteolytic resistance of antimicrobial peptides by using variants of EFK17, an internal segment of LL-37, Antimicrob. Agents Chemother., 53(2), 593 (2009).   DOI
27 V. V. Pai, P. Bhandari, and P. Shukla, Topical peptides as cosmeceuticals, Indian J Dermatol Venereol Leprol, 83(1), 9 (2017).   DOI
28 S. Marepally, C. H. Boakye, P. P. Shah, J.R . Etukala, A. Vemuri, and M. Singh, Design, synthesis of novel lipids as chemical permeation enhancers and development of nanoparticle system for transdermal drug delivery, PLoS ONE, 8(12), e82581 (2013).   DOI
29 H. Kalluri, and A. K. Banga, Transdermal delivery of proteins, AAPS PharmSciTech, 12(1), 431 (2011).   DOI