DOI QR코드

DOI QR Code

Genistein attenuates isoflurane-induced neurotoxicity and improves impaired spatial learning and memory by regulating cAMP/CREB and BDNF-TrkB-PI3K/Akt signaling

  • Jiang, Tao (Department of Anesthesiology, Shandong Cancer Hospital) ;
  • Wang, Xiu-qin (Department of Anesthesiology, Shandong Cancer Hospital) ;
  • Ding, Chuan (Department of Anesthesiology, Shandong Cancer Hospital) ;
  • Du, Xue-lian (Department of Gynecology, Shandong Cancer Hospital)
  • Received : 2016.06.06
  • Accepted : 2016.08.18
  • Published : 2017.11.01

Abstract

Anesthetics are used extensively in surgeries and related procedures to prevent pain. However, there is some concern regarding neuronal degeneration and cognitive deficits arising from regular anesthetic exposure. Recent studies have indicated that brain-derived neurotrophic factor (BDNF) and cyclic AMP response element-binding protein (CREB) are involved in learning and memory processes. Genistein, a plant-derived isoflavone, has been shown to exhibit neuroprotective effects. The present study was performed to examine the protective effect of genistein against isoflurane-induced neurotoxicity in rats. Neonatal rats were exposed to isoflurane (0.75%, 6 hours) on postnatal day 7 (P7). Separate groups of rat pups were orally administered genistein at doses of 20, 40, or 80 mg/kg body weight from P3 to P15 and then exposed to isoflurane anesthesia on P7. Neuronal apoptosis was detected by TUNEL assay and FluoroJade B staining following isoflurane exposure. Genistein significantly reduced apoptosis in the hippocampus, reduced the expression of proapoptotic factors (Bad, Bax, and cleaved caspase-3), and increased the expression of Bcl-2 and Bcl-xL. RT-PCR analysis revealed enhanced BDNF and TrkB mRNA levels. Genistein effectively upregulated cAMP levels and phosphorylation of CREB and TrkB, leading to activation of cAMP/CREB-BDNF-TrkB signaling. PI3K/Akt signaling was also significantly activated. Genistein administration improved general behavior and enhanced learning and memory in the rats. These observations suggest that genistein exerts neuroprotective effects by suppressing isoflurane-induced neuronal apoptosis and by activating cAMP/CREB-BDNF-TrkB-PI3/Akt signaling.

Keywords

References

  1. Jevtovic-Todorovic V, Hartman RE, Izumi Y, Benshoff ND, Dikranian K, Zorumski CF, Olney JW, Wozniak DF. Early exposure to common anesthetic agents causes widespread neurodegeneration in the developing rat brain and persistent learning deficits. J Neurosci. 2003;23:876-882. https://doi.org/10.1523/JNEUROSCI.23-03-00876.2003
  2. Brambrink AM, Evers AS, Avidan MS, Farber NB, Smith DJ, Zhang X, Dissen GA, Creeley CE, Olney JW. Isoflurane-induced neuroapoptosis in the neonatal rhesus macaque brain. Anesthesiology. 2010;112:834-841. https://doi.org/10.1097/ALN.0b013e3181d049cd
  3. Kong F, Xu L, He D, Zhang X, Lu H. Effects of gestational isoflurane exposure on postnatal memory and learning in rats. Eur J Pharmacol. 2011;670:168-174. https://doi.org/10.1016/j.ejphar.2011.08.050
  4. Li Y, Liu C, Zhao Y, Hu K, Zhang J, Zeng M, Luo T, Jiang W, Wang H. Sevoflurane induces short-term changes in proteins in the cerebral cortices of developing rats. Acta Anaesthesiol Scand. 2013;57:380-390. https://doi.org/10.1111/aas.12018
  5. Li Y, Wang F, Liu C, Zeng M, Han X, Luo T, Jiang W, Xu J, Wang H. JNK pathway may be involved in isoflurane-induced apoptosis in the hippocampi of neonatal rats. Neurosci Lett. 2013;545:17-22. https://doi.org/10.1016/j.neulet.2013.04.008
  6. Flick RP, Katusic SK, Colligan RC, Wilder RT, Voigt RG, Olson MD, Sprung J, Weaver AL, Schroeder DR, Warner DO. Cognitive and behavioral outcomes after early exposure to anesthesia and surgery. Pediatrics . 2011;128:e1053-1061. https://doi.org/10.1542/peds.2011-0351
  7. Gentry KR, Steele LM, Sedensky MM, Morgan PG. Early developmental exposure to volatile anesthetics causes behavioral defects in Caenorhabditis elegans. Anesth Analg. 2013;116:185-189. https://doi.org/10.1213/ANE.0b013e31826d37c5
  8. Head BP, Patel HH, Niesman IR, Drummond JC, Roth DM, Patel PM. Inhibition of p75 neurotrophin receptor attenuates isofluranemediated neuronal apoptosis in the neonatal central nervous system. Anesthesiology. 2009;110:813-825. https://doi.org/10.1097/ALN.0b013e31819b602b
  9. Xiong WX, Zhou GX, Wang B, Xue ZG, Wang L, Sun HC, Ge SJ. Impaired spatial learning and memory after sevoflurane-nitrous oxide anesthesia in aged rats is associated with down-regulated cAMP/CREB signaling. PLoS One. 2013;8:e79408. https://doi.org/10.1371/journal.pone.0079408
  10. Wu J, Zhang M, Li H, Sun X, Hao S, Ji M, Yang J, Li K. BDNF pathway is involved in the protective effects of SS-31 on isofluraneinduced cognitive deficits in aging mice. Behav Brain Res. 2016;305:115-121. https://doi.org/10.1016/j.bbr.2016.02.036
  11. Bourtchuladze R, Frenguelli B, Blendy J, Cioffi D, Schutz G, Silva AJ. Deficient long-term memory in mice with a targeted mutation of the cAMP-responsive element-binding protein. Cell. 1994;79:59-68. https://doi.org/10.1016/0092-8674(94)90400-6
  12. Impey S, Mark M, Villacres EC, Poser S, Chavkin C, Storm DR. Induction of CRE-mediated gene expression by stimuli that generate long-lasting LTP in area CA1 of the hippocampus. Neuron. 1996;16:973-982. https://doi.org/10.1016/S0896-6273(00)80120-8
  13. Nakagawa S, Kim JE, Lee R, Chen J, Fujioka T, Malberg J, Tsuji S, Duman RS. Localization of phosphorylated cAMP response element-binding protein in immature neurons of adult hippocampus. J Neurosci. 2002;22:9868-9876. https://doi.org/10.1523/JNEUROSCI.22-22-09868.2002
  14. Fujioka T, Fujioka A, Duman RS. Activation of cAMP signaling facilitates the morphological maturation of newborn neurons in adult hippocampus. J Neurosci. 2004;24:319-328. https://doi.org/10.1523/JNEUROSCI.1065.03.2004
  15. Ao H, Ko SW, Zhuo M. CREB activity maintains the survival of cingulate cortical pyramidal neurons in the adult mouse brain. Mol Pain. 2006;2:15.
  16. Schneider HH. Brain cAMP response to phosphodiesterase inhibitors in rats killed by microwave irradiation or decapitation. Biochem Pharmacol . 1984;33:1690-1693. https://doi.org/10.1016/0006-2952(84)90295-8
  17. Li YF, Huang Y, Amsdell SL, Xiao L, O'Donnell JM, Zhang HT. Antidepressant- and anxiolytic-like effects of the phosphodiesterase-4 inhibitor rolipram on behavior depend on cyclic AMP response element binding protein-mediated neurogenesis in the hip pocampus. Neuropsychopharmacology. 2009;34:2404-2419. https://doi.org/10.1038/npp.2009.66
  18. Brightwell JJ, Smith CA, Neve RL, Colombo PJ. Long-term memory for place learning is facilitated by expression of cAMP response element-binding protein in the dorsal hippocampus. Learn Mem. 2007;14:195-199. https://doi.org/10.1101/lm.395407
  19. Rosenegger D, Parvez K, Lukowiak K. Enhancing memory formation by altering protein phosphorylation balance. Neurobiol Learn Mem. 2008;90:544-552. https://doi.org/10.1016/j.nlm.2008.06.005
  20. Zhang F, Zhu ZQ, Liu DX, Zhang C, Gong QH, Zhu YH. Emulsified isoflurane anesthesia decreases brain-derived neurotrophic factor expression and induces cognitive dysfunction in adult rats. Exp Ther Med. 2014;8:471-477. https://doi.org/10.3892/etm.2014.1769
  21. Minichiello L. TrkB signalling pathways in LTP and learning. Nat Rev Neurosci. 2009;10:850-860. https://doi.org/10.1038/nrn2738
  22. Park H, Poo MM. Neurotrophin regulation of neural circuit development and function. Nat Rev Neurosci. 2013;14:7-23. https://doi.org/10.1038/nrc3653
  23. Huang EJ, Reichardt LF. Trk receptors: roles in neuronal signal transduction. Annu Rev Biochem. 2003;72:609-642. https://doi.org/10.1146/annurev.biochem.72.121801.161629
  24. Reichardt LF. Neurotrophin-regulated signalling pathways. Philos Trans R Soc Lond B Biol Sci. 2006;361:1545-1564. https://doi.org/10.1098/rstb.2006.1894
  25. Takei N, Kawamura M, Hara K, Yonezawa K, Nawa H. Brainderived neurotrophic factor enhances neuronal translation by activating multiple initiation processes: comparison with the effects of insulin. J Biol Chem. 2001;276:42818-42825. https://doi.org/10.1074/jbc.M103237200
  26. Horwood JM1, Dufour F, Laroche S, Davis S. Signalling mechanisms mediated by the phosphoinositide 3-kinase/Akt cascade in synaptic plasticity and memory in the rat. Eur J Neurosci. 2006;23:3375-3384. https://doi.org/10.1111/j.1460-9568.2006.04859.x
  27. Chiang HC, Wang L, Xie Z, Yau A, Zhong Y. PI3 kinase signaling is involved in Abeta-induced memory loss in Drosophila. Proc Natl Acad Sci U S A. 2010;107:7060-7065. https://doi.org/10.1073/pnas.0909314107
  28. Mizuno M, Yamada K, Takei N, Tran MH, He J, Nakajima A, Nawa H, Nabeshima T. Phosphatidylinositol 3-kinase: a molecule mediating BDNF-dependent spatial memory formation. Mol Psychiatry. 2003;8:217-224. https://doi.org/10.1038/sj.mp.4001215
  29. Ponten E1, Fredriksson A, Gordh T, Eriksson P, Viberg H. Neonatal exposure to propofol affects BDNF but not CaMKII, GAP-43, synaptophysin and tau in the neonatal brain and causes an altered behavioural response to diazepam in the adult mouse brain. Behav Brain Res. 2011;223:75-80. https://doi.org/10.1016/j.bbr.2011.04.019
  30. Getek M, Czech N, Muc-Wierzgon M, Grochowska-Niedworok E, Kokot T, Nowakowska-Zajdel E. The active role of leguminous plant components in type 2 diabetes. Evid Based Complement Alternat Med. 2014;2014:293961.
  31. Xu SZ, Zhong W, Ghavideldarestani M, Saurabh R, Lindow SW, Atkin SL. Multiple mechanisms of soy isoflavones against oxidative stress-induced endothelium injury. Free Radic Biol Med. 2009;47:167-175. https://doi.org/10.1016/j.freeradbiomed.2009.04.021
  32. Behloul N, Wu G. Genistein: a promising therapeutic agent for obesity and diabetes treatment. Eur J Pharmacol. 2013;698:31-38. https://doi.org/10.1016/j.ejphar.2012.11.013
  33. Ganai AA, Khan AA, Malik ZA, Farooqi H. Genistein modulates the expression of $NF-{\kappa}B$ and MAPK (p-38 and ERK1/2), thereby attenuating d-Galactosamine induced fulminant hepatic failure in Wistar rats. Toxicol Appl Pharmacol. 2015;283:139-146. https://doi.org/10.1016/j.taap.2015.01.012
  34. Su P, Zhang J, Wang S, Aschner M, Cao Z, Zhao F, Wang D, Chen J, Luo W. Genistein alleviates lead-induced neurotoxicity in vitro and in vivo: Involvement of multiple signaling pathways. Neurotoxicology. 2016;53:153-164. https://doi.org/10.1016/j.neuro.2015.12.019
  35. Spoerlein C, Mahal K, Schmidt H, Schobert R. Effects of chrysin, apigenin, genistein and their homoleptic copper(II) complexes on the growth and metastatic potential of cancer cells. J Inorg Biochem. 2013;127:107-115. https://doi.org/10.1016/j.jinorgbio.2013.07.038
  36. Orliaguet G, Vivien B, Langeron O, Bouhemad B, Coriat P, Riou B. Minimum alveolar concentration of volatile anesthetics in rats during postnatal maturation. Anesthesiology. 2001;95:734-739. https://doi.org/10.1097/00000542-200109000-00028
  37. Wu J, Dong L, Zhang M, Jia M, Zhang G, Qiu L, Ji M, Yang J. Class I histone deacetylase inhibitor valproic acid reverses cognitive deficits in a mouse model of septic encephalopathy. Neurochem Res. 2013;38:2440-2449. https://doi.org/10.1007/s11064-013-1159-0
  38. Ji M, Dong L, Jia M, Liu W, Zhang M, Ju L, Yang J, Xie Z, Yang J. Epigenetic enhancement of brain-derived neurotrophic factor signaling pathway improves cognitive impairments induced by isoflurane exposure in aged rats. Mol Neurobiol. 2014;50:937-944. https://doi.org/10.1007/s12035-014-8659-z
  39. Kim JJ, Fanselow MS. Modality-specific retrograde amnesia of fear. Science. 1992;256:675-677. https://doi.org/10.1126/science.1585183
  40. Lin D, Zuo Z. Isoflurane induces hippocampal cell injury and cognitive impairments in adult rats. Neuropharmacology. 2011;61:1354-1359. https://doi.org/10.1016/j.neuropharm.2011.08.011
  41. Satomoto M, Satoh Y, Terui K, Miyao H, Takishima K, Ito M, Imaki J. Neonatal exposure to sevoflurane induces abnormal social behaviors and deficits in fear conditioning in mice. Anesthesiology. 2009;110:628-637. https://doi.org/10.1097/ALN.0b013e3181974fa2
  42. Istaphanous GK, Howard J, Nan X, Hughes EA, McCann JC, McAuliffe JJ, Danzer SC, Loepke AW. Comparison of the neuroapoptotic properties of equipotent anesthetic concentrations of desflurane, isoflurane, or sevoflurane in neonatal mice. Anesthesiology. 2011;114:578-587. https://doi.org/10.1097/ALN.0b013e3182084a70
  43. Dong Y, Zhang G, Zhang B, Moir RD, Xia W, Marcantonio ER, Culley DJ, Crosby G, Tanzi RE, Xie Z. The common inhalational anesthetic sevoflurane induces apoptosis and increases beta-amyloid protein levels. Arch Neurol. 2009;66:620-631.
  44. Culley DJ, Baxter MG, Yukhananov R, Crosby G. Long-term impairment of acquisition of a spatial memory task following isoflurane-nitrous oxide anesthesia in rats. Anesthesiology. 2004;100:309-314. https://doi.org/10.1097/00000542-200402000-00020
  45. DiMaggio CJ, Sun L, Kakavouli A, Li G. Exposure to anesthesia and the risk of developmental and behavioral disorders in young children. Anesthesiology. 2008;109:A1415.
  46. Wilder RT, Flick RP, Sprung J, Katusic SK, Barbaresi WJ, Mickelson C, Gleich SJ, Schroeder DR, Weaver AL, Warner DO. Early exposure to anesthesia and learning disabilities in a population-based birth cohort. Anesthesiology. 2009;110:796-804. https://doi.org/10.1097/01.anes.0000344728.34332.5d
  47. Sakamoto K, Karelina K, Obrietan K. CREB: a multifaceted regulator of neuronal plasticity and protection. J Neurochem. 2011;116:1-9. https://doi.org/10.1111/j.1471-4159.2010.07080.x
  48. Kida S, Serita T. Functional roles of CREB as a positive regulator in the formation and enhancement of memory. Brain Res Bull. 2014;105:17-24. https://doi.org/10.1016/j.brainresbull.2014.04.011
  49. Gonzalez GA, Montminy MR. Cyclic AMP stimulates somatostatin gene transcription by phosphorylation of CREB at serine 133. Cell. 1989;59:675-680. https://doi.org/10.1016/0092-8674(89)90013-5
  50. Gonzalez GA, Yamamoto KK, Fischer WH, Karr D, Menzel P, Biggs W 3rd, Vale WW, Montminy MR. A cluster of phosphorylation sites on the cyclic AMP-regulated nuclear factor CREB predicted by its sequence. Nature. 1989;337:749-752. https://doi.org/10.1038/337749a0
  51. Carlezon WA Jr, Duman RS, Nestler EJ. The many faces of CREB. Trends Neurosci . 2005;28:436-445. https://doi.org/10.1016/j.tins.2005.06.005
  52. Yamashima T. 'PUFA-GPR40-CREB signaling' hypothesis for the adult primate neurogenesis. Prog Lipid Res. 2012;51:221-231. https://doi.org/10.1016/j.plipres.2012.02.001
  53. Dudek H, Datta SR, Franke TF, Birnbaum MJ, Yao R, Cooper GM, Segal RA, Kaplan DR, Greenberg ME. Regulation of neuronal survival by the serine-threonine protein kinase Akt. Science. 1997;275:661-665. https://doi.org/10.1126/science.275.5300.661
  54. Brunet A, Datta SR, Greenberg ME. Transcription-dependent and -independent control of neuronal survival by the PI3K-Akt signaling pathway. Curr Opin Neurobiol. 2001;11:297-305. https://doi.org/10.1016/S0959-4388(00)00211-7
  55. Ma D, Williamson P, Januszewski A, Nogaro MC, Hossain M, Ong LP, Shu Y, Franks NP, Maze M. Xenon mitigates isoflurane-induced neuronal apoptosis in the developing rodent brain. Anesthesiology. 2007;106:746-753. https://doi.org/10.1097/01.anes.0000264762.48920.80
  56. Hsu SY, Kaipia A, Zhu L, Hsueh AJ. Interference of BAD (Bcl-xL/Bcl-2-associated death promoter)-induced apoptosis in mammalian cells by 14-3-3 isoforms and P11. Mol Endocrinol. 1997;11:1858-1867.
  57. Zhu YM, Wang CC, Chen L, Qian LB, Ma LL, Yu J, Zhu MH, Wen CY, Yu LN, Yan M. Both PI3K/Akt and ERK1/2 pathways participate in the protection by dexmedetomidine against transient focal cerebral ischemia/reperfusion injury in rats. Brain Res. 2013;1494:1-8. https://doi.org/10.1016/j.brainres.2012.11.047
  58. Koh PO. Nicotinamide attenuates the ischemic brain injury-induced decrease of Akt activation and Bad phosphorylation. Neurosci Lett. 2011;498:105-9. https://doi.org/10.1016/j.neulet.2011.05.003
  59. Amano H, Maruyama IN. Aversive olfactory learning and associative long-term memory in Caenorhabditis elegans. Learn Mem. 2011;18:654-665. https://doi.org/10.1101/lm.2224411
  60. Kandel ER. The molecular biology of memory: cAMP, PKA, CRE, CREB-1, CREB-2, and CPEB. Mol Brain. 2012;5:14. https://doi.org/10.1186/1756-6606-5-14
  61. Merz K, Herold S, Lie DC. CREB in adult neurogenesis--master and partner in the development of adult-born neurons? Eur J Neurosci. 2011;33:1078-1086. https://doi.org/10.1111/j.1460-9568.2011.07606.x
  62. Sheng M, Thompson MA, Greenberg ME. CREB: a $Ca^{2+}$-regulated transcription factor phosphorylated by calmodulin-dependent kinases. Science. 1991;252:1427-1430. https://doi.org/10.1126/science.1646483
  63. Finkbeiner S, Tavazoie SF, Maloratsky A, Jacobs KM, Harris KM, Greenberg ME. CREB: a major mediator of neuronal neurotrophin responses. Neuron. 1997;19:1031-1047. https://doi.org/10.1016/S0896-6273(00)80395-5
  64. Henriksson BG, Soderstrom S, Gower AJ, Ebendal T, Winblad B, Mohammed AH. Hippocampal nerve growth factor levels are related to spatial learning ability in aged rats. Behav Brain Res. 1992;48:15-20. https://doi.org/10.1016/S0166-4328(05)80134-2
  65. Bromley-Brits K, Deng Y, Song W. Morris water maze test for learning and memory deficits in Alzheimer's disease model mice. J Vis Exp. 2011. doi: 10.3791/2920.

Cited by

  1. Prenatal Deltamethrin Exposure-Induced Cognitive Impairment in Offspring Is Ameliorated by Memantine Through NMDAR/BDNF Signaling in Hippocampus vol.12, pp.None, 2017, https://doi.org/10.3389/fnins.2018.00615
  2. Genistein Ameliorates Scopolamine-Induced Amnesia in Mice Through the Regulation of the Cholinergic Neurotransmission, Antioxidant System and the ERK/CREB/BDNF Signaling vol.9, pp.None, 2017, https://doi.org/10.3389/fphar.2018.01153
  3. Nutritional Regulators of Bcl-xL in the Brain vol.23, pp.11, 2018, https://doi.org/10.3390/molecules23113019
  4. Brain‐derived neurotrophic factor promotes proliferation and progesterone synthesis in bovine granulosa cells vol.234, pp.6, 2017, https://doi.org/10.1002/jcp.27536
  5. The predictive value of serum p-CREB level on secondary cognitive impairment in patients with mild-to-moderate craniocerebral trauma vol.42, pp.3, 2019, https://doi.org/10.1007/s10143-018-01072-2
  6. Neuroprotection of miR-214 against isoflurane-induced neurotoxicity involves the PTEN/PI3K/Akt pathway in human neuroblastoma cell line SH-SY5Y vol.678, pp.None, 2017, https://doi.org/10.1016/j.abb.2019.108181
  7. Protective effects of Genistein on the cognitive deficits induced by chronic sleep deprivation vol.34, pp.4, 2017, https://doi.org/10.1002/ptr.6567
  8. Genistein inhibited the proliferation of kidney cancer cells via CDKN2a hypomethylation: role of abnormal apoptosis vol.52, pp.6, 2017, https://doi.org/10.1007/s11255-019-02372-2
  9. miR-124-3p Ameliorates Isoflurane-Induced Learning and Memory Impairment via Targeting STAT3 and Inhibiting Neuroinflammation vol.28, pp.4, 2021, https://doi.org/10.1159/000515661
  10. Genistein Attenuates Isoflurane-Induced Neuroinflammation by Inhibiting TLR4-Mediated Microglial-Polarization in vivo and in vitro vol.14, pp.None, 2021, https://doi.org/10.2147/jir.s304336
  11. Effects of Nano-Sulfides on Learning and Memory Abilities and Expression of Related Genes in Cyclic Adenosine Monophosphate-cAMP Response Element Binding-Brain-Derived Neurotrophic Factor Pathway in R vol.21, pp.2, 2021, https://doi.org/10.1166/jnn.2021.18700
  12. The Potential Effects of Phytoestrogens: The Role in Neuroprotection vol.26, pp.10, 2021, https://doi.org/10.3390/molecules26102954
  13. Ferroptosis contributes to isoflurane-induced neurotoxicity and learning and memory impairment vol.7, pp.1, 2017, https://doi.org/10.1038/s41420-021-00454-8
  14. MiR-191 downregulation protects against isoflurane-induced neurotoxicity through targeting BDNF vol.31, pp.5, 2021, https://doi.org/10.1080/15376516.2021.1886211
  15. Current Perspectives on the Beneficial Effects of Soybean Isoflavones and Their Metabolites for Humans vol.10, pp.7, 2021, https://doi.org/10.3390/antiox10071064
  16. Genistein acts as antidepressant agent against chronic mild stress‐induced depression model of rats through augmentation of brain‐derived neurotrophic factor vol.11, pp.8, 2021, https://doi.org/10.1002/brb3.2300
  17. Autophagy and apoptosis cascade: which is more prominent in neuronal death? vol.78, pp.24, 2017, https://doi.org/10.1007/s00018-021-04004-4