• 제목/요약/키워드: c-myc expression

검색결과 136건 처리시간 0.027초

n-3 지방산이 유방암세포의 증시과 지질과산화 및 Oncogene 발현에 미치는 영향 (Effects of n-3 Fatty Acids on Proliferation of Human Breast Cancer Cells in Relatino to Lipid Peroxidation and Oncogene Expression)

  • 조성희
    • Journal of Nutrition and Health
    • /
    • 제30권8호
    • /
    • pp.987-994
    • /
    • 1997
  • To investigate the effects of n-3 fatty acids on breast cancer, MDA-MB231 human breast cancer cells were cultured in the presence of $\alpha$-linolenic (LNA), eicosapentaenoic(EPA), and docosahexaenoic acid (DHA) at a concentration of 0.5$\mu\textrm{g}$/ml in serum -free IMM medium. Cell growth was monitored and thiobarbituric acid reactive substances (TBARS), $\alpha$-tocopherol contents, and oncogene expression were measured. To compare the effects of n-3 fatty acids with other types of fatty acid, steraic (STA), olieic(OA). linoleic acid(LA) were used. After one day , cell growth was retarded most highly when DHA was in the medium. Cellular TBARS level measured after three days of culture was the highest with DHA in the medium and was also increased by LNA and EPA, compared with STA, OA and LA. Alpha-tocoopherol contents of cells were decreased by DHA but only modestly. There was non significant difference in $\alpha$-tocopherol contents in cells cultured in the presence of the other fatty acids. northern blot hybridization carried out with cells cultured during 24 hours showed that levels of erbB-2 mRNA were not altered by six different fatty acids in the medium but those of c-myc were transiently decreased in the early period by both n-6 and n-3 polyunsaturated fatty acids. The level of tumor suppressor gen p53 mRNA , however, was increased by DHA with time. It is concluded that the cytotoxicity of lipid peroxide and increased expression of tumor suppressor gene p53 are at least partly responsible for the inhibitory effect of DHA on growth of breast cancer cells.

  • PDF

Modification of ERα by UFM1 Increases Its Stability and Transactivity for Breast Cancer Development

  • Yoo, Hee Min;Park, Jong Ho;Kim, Jae Yeon;Chung, Chin Ha
    • Molecules and Cells
    • /
    • 제45권6호
    • /
    • pp.425-434
    • /
    • 2022
  • The post-translational modification (e.g., phosphorylation) of estrogen receptor α (ERα) plays a role in controlling the expression and subcellular localization of ERα as well as its sensitivity to hormone response. Here, we show that ERα is also modified by UFM1 and this modification (ufmylation) plays a crucial role in promoting the stability and transactivity of ERα, which in turn promotes breast cancer development. The elevation of ufmylation via the knockdown of UFSP2 (the UFM1-deconjugating enzyme in humans) dramatically increases ERα stability by inhibiting ubiquitination. In contrast, ERα stability is decreased by the prevention of ufmylation via the silencing of UBA5 (the UFM1-activating E1 enzyme). Lys171 and Lys180 of ERα were identified as the major UFM1 acceptor sites, and the replacement of both Lys residues by Arg (2KR mutation) markedly reduced ERα stability. Moreover, the 2KR mutation abrogated the 17β-estradiol-induced transactivity of ERα and the expression of its downstream target genes, including pS2, cyclin D1, and c-Myc; this indicates that ERα ufmylation is required for its transactivation function. In addition, the 2KR mutation prevented anchorage-independent colony formation by MCF7 cells. Most notably, the expression of UFM1 and its conjugating machinery (i.e., UBA5, UFC1, UFL1, and UFBP1) were dramatically upregulated in ERα-positive breast cancer cell lines and tissues. Collectively, these findings implicate a critical role attributed to ERα ufmylation in breast cancer development by ameliorating its stability and transactivity.

Artesunate와 비스테로이드소염제 NSAID의 병용 처리에 의한 항암 활성 증강 (Potentiation of Anticancer Effect of Artesunate by Combination with Nonsteroidal Anti-inflammatory Drugs on Human Cancer Cells)

  • 문현정;강치덕;김선희
    • 생명과학회지
    • /
    • 제31권10호
    • /
    • pp.873-884
    • /
    • 2021
  • 본 연구에서는 다양한 인체 암포주를 대상으로 NSAID의 항암 효과를 증강시키는 artesunate (ART)의 역할과 이에 대한 분자적 기전을 연구하였다. 다양한 타입의 암세포주를 대상으로 암세포 성장 억제 활성을 조사한 결과, ART는 NSAID인 celecoxib (CCB) 또는 dimethyl-CCB (DMC)와의 병용 효과를 나타내었다. ART 처리로 ATF4/CHOP의 발현 증강과 함께 오토파지 유도 표식인 p62 감소의 결과로서, ATF4/CHOP 경로가 ART의 오토파지 유도 활성에 관여할 것으로 예상되었으며, ART의 오토파지 활성과 관련하여 NRF2 및 암 줄기 세포 관련 단백질인 CD44, CD133, ALDH1, Oct4, mutated p53 (mutp53) 및 c-Myc의 발현이 감소되었다. 또한 DMC 단독처리 보다 ART와 DMC의 병용으로 ATF4/CHOP의 발현 증강과 p62의 감소가 더욱 촉진되고, NRF2 및 암 줄기 세포 관련 단백질 발현 감소도 현저히 촉진되면서 궁극적으로 PARP 활성화에 의해 apoptosis가 유도됨을 알 수 있었다. 이러한 결과는 ART/DMC 병용 처리가 각 물질 단독 처리보다 암세포의 성장 억제 및 apoptosis 유도에 더욱 효과적이고, ART 및 DMC 의 오토파지 유도 활성은 암 줄기 세포 관련 단백질의 분해를 촉진함으로써, 암 줄기 세포가 제거될 수 있음을 시사하였다. 이와 같이 ART는 NSAID 뿐만 아니라 imatinib의 항암 효과를 증강시키는 활성으로, chemosensitizer로서 중요한 후보 물질이 될 수 있음을 밝혔다.

오가피의 면역조절작용 (Immunoregulatory Action of OGAPI)

  • 김남석;권진;고하영;최동성;오찬호
    • 동의생리병리학회지
    • /
    • 제18권5호
    • /
    • pp.1337-1342
    • /
    • 2004
  • The purpose of this research was to investigate the immunoregulatory effect and the leukemia cell apoptosis of EtOH extract of OGAPI(OGP). The proliferation of cultured splenocytes, thymocytes and mesenteric lymph node cells were enhanced by the addition of OGP. Splenic and thymic T lymphocytes, especially TH and Tc cells were significantly increased in OGP-administered mice. OGP markedly increased the production of γ-interferon in mice serum and accelerated the phagocytic activity in peritoneal macrophages. OGP treatment enhanced the apoptosis of L1210 mouse leukemia and Jurkat, Molt4 human leukemia cells, and increased the expression of apoptosis-related ICE, c-myc, p53 gene in Jurkat cell. These results suggest that OGP have an immunoregulatory action and anti-cancer activity.

Growth Inhibitory Activity of Honokiol through Cell-cycle Arrest, Apoptosis and Suppression of Akt/mTOR Signaling in Human Hepatocellular Carcinoma Cells

  • Hong, Ji-Young;Park, Hyen Joo;Bae, KiHwan;Kang, Sam Sik;Lee, Sang Kook
    • Natural Product Sciences
    • /
    • 제19권2호
    • /
    • pp.155-159
    • /
    • 2013
  • Honokiol, a naturally occurring neolignan mainly found in Magnolia species, has exhibited a potential anti-proliferative activity in human cancer cells. However, the growth inhibitory activity against hepatocellular carcinoma cells and the underlying molecular mechanisms has been poorly determined. The present study was designed to examine the anti-proliferative effect of honokiol in SK-HEP-1 human hepatocellular cancer cells. Honokiol exerted anti-proliferative activity with cell-cycle arrest at the G0/G1 phase and sequential induction of apoptotic cell death. The cell-cycle arrest was well correlated with the down-regulation of checkpoint proteins including cyclin D1, cyclin A, cyclin E, CDK4, PCNA, retinoblastoma protein (Rb), and c-Myc. The increase of sub-G1 peak by the higher concentration of honokiol ($75{\mu}M$) was closely related to the induction of apoptosis, which was evidenced by decreased expression of Bcl-2, Bid, and caspase-9. Hohokiol was also found to attenuate the activation of signaling proteins in the Akt/mTOR and ERK pathways. These findings suggest that the anti-proliferative effect of honokiol was associated in part with the induction of cell-cycle arrest, apoptosis, and dow-nregulation of Akt/mTOR signaling pathways in human hepatocellular cancer cells.

Melatonin inhibits glycolysis in hepatocellular carcinoma cells by downregulating mitochondrial respiration and mTORC1 activity

  • Lee, Seunghyeong;Byun, Jun-Kyu;Kim, Na-Young;Jin, Jonghwa;Woo, Hyein;Choi, Yeon-Kyung;Park, Keun-Gyu
    • BMB Reports
    • /
    • 제55권9호
    • /
    • pp.459-464
    • /
    • 2022
  • Various mechanisms have been suggested to explain the chemopreventive and tumor-inhibitory effects of melatonin. Despite the growing evidence supporting melatonin-induced mitochondrial dysfunction, it remains largely unknown how this phenomenon modulates metabolic reprogramming in cancer cells. The aim of our study was to identify the mechanism underlying the anti-proliferative and apoptotic effects of melatonin, which is known to inhibit glycolysis. We analyzed the time-dependent effects of melatonin on mitochondrial respiration and glycolysis in liver cancer cells. The results showed that from a cell bioenergetic point of view, melatonin caused an acute reduction in mitochondrial respiration, however, increased reactive oxygen species production, thereby inhibiting mTORC1 activity from an early stage post-treatment without affecting glycolysis. Nevertheless, administration of melatonin for a longer time reduced expression of c-Myc protein, thereby suppressing glycolysis via downregulation of HK2 and LDHA. The data presented herein suggest that melatonin suppresses mitochondrial respiration and glycolysis simultaneously in HCC cells, leading to anti-cancer effects. Thus, melatonin can be used as an adjuvant agent for therapy of liver cancer.

Vitamin C promotes the early reprogramming of fetal canine fibroblasts into induced pluripotent stem cells

  • Sang Eun Kim;Jun Sung Lee;Keon Bong Oh;Jeong Ho Hwang
    • 한국동물생명공학회지
    • /
    • 제38권4호
    • /
    • pp.199-208
    • /
    • 2023
  • Background: Canine induced pluripotent stem cells (iPSCs) are an attractive source for veterinary regenerative medicine, disease modeling, and drug development. Here we used vitamin C (Vc) to improve the reprogramming efficiency of canine iPSCs, and its functions in the reprogramming process were elucidated. Methods: Retroviral transduction of Oct4, Sox2, Klf4, c-Myc (OSKM), and GFP was employed to induce reprogramming in canine fetal fibroblasts. Following transduction, the culture medium was subsequently replaced with ESC medium containing Vc to determine the effect on reprogramming activity. Results: The number of AP-positive iPSC colonies dramatically increased in culture conditions supplemented with Vc. Vc enhanced the efficacy of retrovirus transduction, which appears to be correlated with enhanced cell proliferation capacity. To confirm the characteristics of the Vc-treated iPSCs, the cells were cultured to passage 5, and pluripotency markers including Oct4, Sox2, Nanog, and Tra-1-60 were observed by immunocytochemistry. The expression of endogenous pluripotent genes (Oct4, Nanog, Rex1, and telomerase) were also verified by PCR. The complete silencing of exogenously transduced human OSKM factors was observed exclusively in canine iPSCs treated with Vc. Canine iPSCs treated with Vc are capable of forming embryoid bodies in vitro and have spontaneously differentiated into three germ layers. Conclusions: Our findings emphasize a straightforward method for enhancing the efficiency of canine iPSC generation and provide insight into the Vc effect on the reprogramming process.

N-Nitrosodiethylamine과 사염화탄소로 유발된 흰쥐의 간암발생에 대한 인진호탕 추출액의 효과 (The Effect of the Injinhotang Extract on the Hepatocarcinogenesis Induced by N-Nitrosodiethylamine and Carbon Tetrachloride in Rats)

  • 윤중식;김정상
    • 한국식품영양과학회지
    • /
    • 제38권4호
    • /
    • pp.436-441
    • /
    • 2009
  • 본 실험은 N-nitrosodiethylamine(NDEA)와 사염화탄소 ($CCl_4$)로 유발된 흰쥐의 간암 생성에 대한 인진호탕의 효과를 조사하였다. 실험은 8주 동안 실시하였고, 세 군으로 분류하였다. 정상군(Nor), 간암을 유발한 대조군(Con), 간암 유발 후 인진호탕 추출액(260 mg/kg/day)을 투여한 실험군 (IJH)으로 구분하였다. 체중은 정상군에 비하여 대조군에서 유의적으로 감소하였지만 실험군에서는 증가하였다. NDEA로 유발된 흰쥐의 혈청 AST, ALT, LDH, ALP와 AFP의 수준은 증가하였다. 반대로, 인진호탕 추출액을 처리했을 때, 혈청 AST, ALT, LDH, ALP와 AFP의 수준이 감소하였다. 흰쥐의 간에서 bcl-2 mRNA의 수준은 대조군에 비해 실험군에서 증가되었다. 그러나 c-myc mRNA의 수준은 대조군에 비해 감소하였다. 또한 NDEA로 손상된 간세포 조직의 공포화가 인진호탕 추출액의 투여로 감소하는 것을 관찰 할 수 있었다. 이상의 결과로 보아 인진호탕 추출액 투여가 NDEA와 사염화탄소로 유도된 흰쥐의 간암 생성을 억제 또는 지연하는 것으로 사료된다.

Lgr5와 결합하는 신규 헵타펩타이드를 이용한 인체 모낭 세포의 활성과 모낭줄기세포 분화 유도 (Novel Heptapeptide Binds to the Lgr5 Induces Activation of Human Hair Follicle Cells and Differentiation of Human Hair Follicle Bulge Stem Cells)

  • 김민웅;이응지;길하나;정용지;김은미
    • 대한화장품학회지
    • /
    • 제49권1호
    • /
    • pp.75-85
    • /
    • 2023
  • 본 연구에서는 7 개의 아미노산으로 이루어진 헵타펩타이드의 Lgr5 binding에 따른 인체 모낭 구성 세포의 활성에 대한 영향을 확인하였다. 표면 플라즈몬 공명(surface plasmon resonance, SPR) 시스템을 이용하여 헵타펩타이드가 Lgr5에 결합하는 것을 확인하였다. 인체 모유두세포(human hair follicle dermal papilla cell, HHFDPC)에 헵타펩타이드를 처리한 결과, 농도 의존적인 세포 증식이 나타났으며 β-catenin의 세포 내핵 이동 및 하위 유전자인 LEF1, Cyclin-D1, c-Myc의 발현 증가가 관찰되었다. 그리고 세포 증식 기전 관련 인자인 Akt와 ERK의 인산화 수준이 증가되었으며, 성장인자인 hepatocyte growth factor (HGF), keratinocyte growth factor (KGF), vascular endothelial growth factor (VEGF) 발현이 유도되었다. 또한 인체 모모세포(human hair germinal matrix cell, HHGMC)의 분화 관련 전사 인자와 인체 외모근초세포(human hair outer root sheath cell, HHORSC)의 분화 표지 인자들도 헵타펩타이드 처리 시 높은 발현율을 보였다. 추가적으로 우리는 헵타펩타이드의 인체 모낭줄기세포(human hair follicle stem cell, HHFSC) 분화에 대한 영향을 조사하였다. 그 결과, HHFSC 표지인자들의 mRNA와 단백질 수준이 감소하였고 반면에 분화 표지인자들은 증가하였다. 상기의 결과들은 헵타펩타이드가 인체 모낭 구성 세포에서 Wnt/β-catenin 경로를 촉진시켜 증식 또는 분화를 유도할 수 있음을 보여준다. 이를 토대로 종합해 볼 때, 본 연구의 헵타펩타이드는 모발 성장을 유도하고 탈모 개선에 도움을 줄 수 있는 기능성 원료로 사용될 수 있을 것으로 보인다.

Luteolin Induced-growth Inhibition and Apoptosis of Human Esophageal Squamous Carcinoma Cell Line Eca109 Cells in vitro

  • Wang, Ting-Ting;Wang, Shao-Kang;Huang, Gui-Ling;Sun, Gui-Ju
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권11호
    • /
    • pp.5455-5461
    • /
    • 2012
  • Luteolin is a plant flavonoid which exhibits anti-oxidative, anti-inflammatory and anti-tumor effects. However, the antiproliferative potential of luteolin is not fully understood. In this study, we investigated the effect of luteolin on cell cycling and apoptosis in human esophageal squamous carcinoma cell line Eca109 cells. MTT assays showed that luteolin had obvious cytotoxicity on Eca109 with an $IC_{50}$ of $70.7{\pm}1.72{\mu}M$ at 24h. Luteolin arrested cell cycle progression in the G0/G1 phase and prevented entry into S phase in a dose- and time-dependent manner. as assessed by FCM. Luteolin induced apoptosis of Eca109 cells was demonstrated by AO/EB staining assay and annexin V-FITC/PI staining. Moreover, luteolin downregulated the expression of cyclin D1, survivin and c-myc, and it also upregulated the expression of p53, in line with the fact that luteolin was able to inhibit Eca109 cell proliferation.