• Title/Summary/Keyword: c-fos

Search Result 484, Processing Time 0.032 seconds

Biological Evaluation of Bone Marrow-Derived Stem Cells onto Different Wettability by RT-PCR (역전사 중합효소 연쇄반응을 이용한 표면 적심성에 따른 골수유래 줄기세포의 생물학적 평가)

  • 김은정;박종수;김문석;조선행;이종문;이해방;강길선
    • Polymer(Korea)
    • /
    • v.28 no.3
    • /
    • pp.218-224
    • /
    • 2004
  • The adhesion and proliferation of mammalian cells on polymeric biomaterials depend on the surface characteristics such as wettability, chemistry, charge and roughness. In order to recognize the correlation between the adhesion and proliferation of human bone marrow derived stem cells (BMSCs) and surface property, radio frequency generated plasma treatment on low density polyethylene (LDPE) has been carried out. The modified LDPE surfaces were characterized by measuring the static water contact angle. The adhesion and proliferation of cells on LDPE films were characterized by cell counting and reverse transcription-polymerase chain reaction (RT-PCR). The water contact angle of the film surface decreased with plasma treatment time. Proto-oncogenes (c-myc, c-fos) and tumor suppressor gene (p153) showed maximum expression with contact angle of 60 ∼ 70$^{\circ}$ range of LDPE film. By cell counting, we confirmed that the rate of cell proliferation appeared the higher on the film surface of the contact angle of 60∼70$^{\circ}$ We concluded that the surface wettability is an important role for the growth and differentiation of BMSCs.

Korean Red Ginseng water extract inhibits cadmium-induced lung injury via suppressing MAPK/ERK1/2/AP-1 pathway

  • Mitra, Ankita;Rahmawati, Laily;Lee, Hwa Pyoung;Kim, Seung A.;Han, Chang-Kyun;Hyun, Sun Hee;Cho, Jae Youl
    • Journal of Ginseng Research
    • /
    • v.46 no.5
    • /
    • pp.690-699
    • /
    • 2022
  • Background: Few studies reported the therapeutic effect of Korean Red Ginseng (KRG) in lung inflammatory diseases. However, the anti-inflammatory role and underlying molecular in cadmium-induced lung injury have been poorly understood, directly linked to chronic lung diseases (CLDs): chronic obstructive pulmonary disease (COPD), cancer etc. Therefore, in this study we aim to investigate the therapeutic activities of water extract of KRG (KRG-WE) in mouse cadmium-induced lung injury model. Method: The anti-inflammatory roles and underlying mechanisms of KRG-WE were evaluated in vitro under cadmium-stimulated lung epithelial cells (A549) and HEK293T cell line and in vivo in cadmium-induced lung injury mouse model using semi-quantitative polymerase chain reaction (RT-PCR), quantitative real-time PCR (qPCR), luciferase assay, immunoblotting, and FACS. Results: KRG-WE strongly ameliorated the symptoms of CdSO4-induced lung injury in mice according to total cell number in bronchoalveolar lavage fluid (BALF) and severity scores as well as cytokine levels. KRG-WE significantly suppressed the upregulation of inflammatory signaling comprising mitogen-activated protein kinases (MAPK) and their upstream enzymes. In in vitro study, KRG-WE suppressed expression of interleukin (IL)-6, matrix metalloproteinase (MMP)-2, and IL-8 while promoting recovery in CdSO4-treated A549 cells. Similarly, KRG-WE reduced phosphorylation of MAPK and c-Jun/c-Fos in cadmium-exposed A549 cells. Conclusion: KRG-WE was found to attenuate symptoms of cadmium-induced lung injury and reduce the expression of inflammatory genes by suppression of MAPK/AP-1-mediated pathway.

HPV-18 E7 Interacts with Elk-1 Leading to Elevation of the Transcriptional Activity of Elk-1 in Cervical Cancer

  • Go, Sung-Ho;Rho, Seung Bae;Yang, Dong-Wha;Kim, Boh-Ram;Lee, Chang Hoon;Lee, Seung-Hoon
    • Biomolecules & Therapeutics
    • /
    • v.30 no.6
    • /
    • pp.593-602
    • /
    • 2022
  • The human papillomavirus (HPV)-18 E7 (E7) oncoprotein is a major transforming protein that is thought to be involved in the development of cervical cancer. It is well-known that E7 stimulates tumour development by inactivating pRb. However, this alone cannot explain the various characteristics acquired by HPV infection. Therefore, we examined other molecules that could help explain the acquired cancer properties during E7-induced cancer development. Using the yeast two-hybrid (Y2H) method, we found that the Elk-1 factor, which is crucial for cell proliferation, invasion, cell survival, anti-apoptotic activity, and cancer development, binds to the E7. By determining which part of E7 binds to which domain of Elk-1 using the Y2H method, it was found that CR2 and CR3 of the E7 and parts 1-206, including the ETS-DNA domain of Elk-1, interact with each other. As a result of their interaction, the transcriptional activity of Elk-1 was increased, thereby increasing the expression of target genes EGR-1, c-fos, and E2F. Additionally, the colony forming assay revealed that overexpression of Elk-1 and E7 promotes C33A cell proliferation. We expect that the discovery of a novel E7 function as an Elk-1 activator could help explain whether the E7 has novel oncogenic activities in addition to p53 inactivation. We also expect that it will offer new methods for developing improved strategies for cervical cancer treatment.

Effect of Toosendan Fructus on Chronic Acid Reflux Esophagitis Rats (천연자(川練子)가 만성 역류성 식도염 흰쥐에 미치는 효과)

  • Lee, Jin A;Shin, Mi-Rae;Choi, Jeong Won;Roh, Seong-Soo
    • The Korea Journal of Herbology
    • /
    • v.36 no.3
    • /
    • pp.1-8
    • /
    • 2021
  • Objective : Reflux esophagitis (RE), one of gastroesophageal reflux disease (GERD), is a disease that causes inflammation due to reflux of stomach contents such as stomach acid and pepsin due to the unstable gastroesophageal sphincter, and is currently increasing worldwide. The currently used treatment for reflux esophagitis has various side effects. Therefore, in this study the effect of Toosendan Fructus extract on chronic acid reflux esophagitis in rats was evaluated in order to find a new treatment material for reflux treatment. Methods : After inducing reflux esophagitis through surgery, the group was separated and the drug was administered for 2 weeks; Normal rats (Normal, n=8), chronic acid reflux esophagitis rats (Control, n=8), Toosendan Fructus 200 mg/kg body weight/day-treated chronic acid reflux esophagitis rats (TF, n=8). After, we were taken esophageal tissue and esophageal mucosa damage was identified, and analyzed the expression of NADPH oxidase, AP-1/MAPK-related proteins, and tight junction proteins by western blot in esophageal tissue. Results : Toosendan Fructus administration significantly protected the esophageal mucosal damage of reflux esophagitis. Also, Toosendan Fructus significantly reduced the expression of NADPH oxidases (NOX2 and p22phox) and AP-1/MAPK-related proteins (c-Fos, c-Jun, p-p38, p-ERK, and p-JNK). In addition, it significantly increased the expression of tight junction proteins (Occludin, Claudin-3, and Claudin-4). Conclusions : These results suggest that Toosendan Fructus reduced damage to the esophageal mucosa by protecting the esophageal mucosa by upregulating tight junctions proteins as well as inhibiting the AP-1/MAPK pathway through reducing NADPH oxidases expression.

Hydroxychavicol Inhibits In Vitro Osteoclastogenesis via the Suppression of NF-κB Signaling Pathway

  • Sirada Srihirun;Satarat Mathithiphark;Chareerut Phruksaniyom;Pitchanun Kongphanich;Wisutthaporn Inthanop;Thanaporn Sriwantana;Salunya Tancharoen;Nathawut Sibmooh;Pornpun Vivithanaporn
    • Biomolecules & Therapeutics
    • /
    • v.32 no.2
    • /
    • pp.205-213
    • /
    • 2024
  • Hydroxychavicol, a primary active phenolic compound of betel leaves, previously inhibited bone loss in vivo by stimulating osteogenesis. However, the effect of hydroxychavicol on bone remodeling induced by osteoclasts is unknown. In this study, the anti-osteoclastogenic effects of hydroxychavicol and its mechanism were investigated in receptor activator of nuclear factor kappa-B ligand (RANKL)-induced osteoclasts. Hydroxychavicol reduced the number of tartrate resistance acid phosphatase (TRAP)-positive multinucleated, F-actin ring formation and bone-resorbing activity of osteoclasts differentiated from RAW264.7 cells in a concentration-dependent manner. Furthermore, hydroxychavicol decreased the expression of osteoclast-specific genes, including cathepsin K, MMP-9, and dendritic cell-specific transmembrane protein (DC-STAMP). For mechanistic studies, hydroxychavicol suppressed RANKL-induced expression of major transcription factors, including the nuclear factor of activated T-cells 1 (NFATc1), c-Fos, and c-Jun. At the early stage of osteoclast differentiation, hydroxychavicol blocked the phosphorylation of NF-κB subunits (p65 and Iκβα). This blockade led to the decrease of nuclear translocation of p65 induced by RANKL. In addition, the anti-osteoclastogenic effect of hydroxychavicol was confirmed by the inhibition of TRAP-positive multinucleated differentiation from human peripheral mononuclear cells (PBMCs). In conclusion, hydroxychavicol inhibits osteoclastogenesis by abrogating RANKL-induced NFATc1 expression by suppressing the NF-κB signaling pathway in vitro.

Pectolinarigenin ameliorated airway inflammation and airway remodeling to exhibit antitussive effect

  • Quan He;Weihua Liu;Xiaomei Ma;Hongxiu Li;Weiqi Feng;Xuzhi Lu;Ying Li;Zi Chen
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.28 no.3
    • /
    • pp.229-237
    • /
    • 2024
  • Cough is a common symptom of several respiratory diseases. However, frequent coughing from acute to chronic often causes great pain to patients. It may turn into cough variant asthma, which seriously affects people's quality of life. For cough treatment, it is dominated by over-the-counter antitussive drugs, such as asmeton, but most currently available antitussive drugs have serious side effects. Thus, there is a great need for the development of new drugs with potent cough suppressant. BALB/c mice were used to construct mice model with cough to investigate the pharmacological effects of pectolinarigenin (PEC). Hematoxylin-eosin and Masson staining were used to assess lung injury and airway remodeling, and ELISA was used to assess the level of inflammatory factor release. In addition, inflammatory cell counts were measured to assess airway inflammation. Airway hyperresponsiveness assay was used to assess respiratory resistance in mice. Finally, we used Western blotting to explore the potential mechanisms of PEC. We found that PEC could alleviate lung tissue injury and reduce the release of inflammatory factors, inhibit of cough frequency and airway wall collagen deposition in mice model with cough. Meanwhile, PEC inhibited the Ras/ERK/c-Fos pathway to exhibit antitussive effect. Therefore, PEC may be a potential drug for cough suppression.

Quality Characteristics of Soy Ice Cream Prepared with Fermented Soybean Powder Base and Oligosaccharide and Its Blood Glucose Lowering Effect (대두분말 발효 베이스와 올리고당으로 제조한 콩아이스크림의 품질특성과 혈당개선능)

  • Park, In-Kyung;Yang, Sun-Hee;Choi, Young-Sun
    • Korean Journal of Food Science and Technology
    • /
    • v.40 no.1
    • /
    • pp.88-95
    • /
    • 2008
  • The purpose of this study was to improve the quality characteristics of soy ice cream supplemented with oligosaccharide, and to test its blood glucose lowering effect. Boiled soybean powder was compared to parched soybean powder and to milk, as an ingredient. The soybean powder base was prepared by incubating with fructooligosaccharide (FOS) and apple juice, along with Lactobacillus acidophilus and L. bulgaricus at $30-40^{circ}C$ for 24 hr. With the fermentation process, the fishy smell of the soybean was removed and the taste improved. The overrun and melt-down values of the boiled soybean ice cream were significantly higher than those of the parched soybean ice cream, although they were significantly lower than those of the milk ice cream. The sensory characteristics of the soy ice cream prepared with the fermented base of boiled soybeans were significantly improved, as compared to those of the ice cream made using parched soybeans, but they were not significantly different from those of the milk ice cream. The blood glucose level at 120 min after ingestion of the ice cream prepared with FOS and the fermented base of boiled soybean powder was significantly lower than that occurring with the milk ice cream made with sugar.

Improving the efficacy of Lespedeza cuneata ethanol extract on ultraviolet-induced photoaging (야관문 에탄올 추출물의 자외선 노출에 의한 피부 광노화 개선 효과)

  • Jung, Hee Kyoung;Choi, Mi Ok;Kim, Bae Jin;Jo, Seung Kyeung;Jeong, Yoo Seok
    • Food Science and Preservation
    • /
    • v.21 no.2
    • /
    • pp.264-275
    • /
    • 2014
  • This study evaluated the improving efficacy of Lespedeza cuneata ethanol extract on skin photoaging induced by ultraviolet (UV) irradiation. The total polyphenol and flavonoid contents of the extract were respectively $134.98{\pm}1.70$ and $16.20{\pm}0.05$ mg/g, respectively. The superoxide anion radical scavenging activity and electron-donating ability of the extract were shown to be dependent on concentration, and the antioxidant ability was shown to be more effective in superoxide anion radical scavenging activity than in electron-donating ability under the same concentration conditions. In the in vivo test conducted using hairless mouse with skin photoaging induced by UVB irradiation, the skin erythema of the groups treated with the extract (AS) reduced to 28% of the control, and the skin moisture content increased to 131%.. The extract treatment of the UV-damaged skin improved the morphological and histopathological state of the skin. Furthermore, the SOD, GST and CAT activities in the skin tissue of the AS group increased, and the XO activity and TBARS generation decreased. With regard to the genes related to the photoaging skin, the expression of PAK, p38, c-Fos, c-Jun, TNF-${\alpha}$ and MMP-3 in the skin of the AS group were found to have decreased. It was therefore concluded that Lespedeza cuneata ethanol extract can reduce wrinkle formation in the skin due to the regulation of the gene expression caused by the exposure to UVB light.

In Vitro Anti-aging and Hair Follicle Dermal Papilla Cells Activation Effects of Usnea diffracta Vain Extract (송라 추출물의 세포 수준에서 항노화 및 모유두세포 활성화 효과)

  • Min Jeong Kim;Won Yeoung Choi;Hyun Woo Shim;Eun Jin Shin;Jung No Lee;Sung Min Park;Hwa Sun Ryu
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.50 no.1
    • /
    • pp.37-48
    • /
    • 2024
  • Songla (Usnea diffracta Vain.) is one of the lichens belonging to the genus Usnea, and pharmacological activities such as antioxidant, antimicrobial, anti-inflammatory, anti-tumor and cardiovascular protection have been reported in previous studies, but its efficacy in skin and hair is not well known. In this study, the effect of Usnea diffracta extract (UDE) on anti-aging and dermal papilla cell proliferation was verified in vitro. As a result of the experiment, it was confirmed that the UDE significantly reduced the expression of MMP-1 and the activity of MAPKs (ERK, p38, JNK) and AP-1 (c-Fos, c-Jun), which were increased by UVA in HDFn. In addition, the UDE significantly increased the proliferation of HFDPC and significantly increased the mRNA expression of VEGF and KGF, which are hair growth factors. Accordingly, the phosphorylation of ERK/CREB involved in hair proliferation and expression of growth factors was increased in a concentration-dependent manner. The main component represented by the main peak was separated and purified using Prep LC by concentrating the UDE, which was confirmed as diffractaic acid through NMR and Mess analysis. Isolated diffractaic acid significantly reduced the expression of MMP-1 increased by UVA in HDFn and increased the proliferation of HFDPC in a concentration-dependent manner. The result suggest that UDE proved its usability as a natural cosmetic material with anti-aging and dermal papilla cell activation effects.

Optimal conditions and effects of prebiotics for growth and antimicrobial substances production of Lactobacillus brevis BK11 (Lactobacillus brevis BK11의 증식과 항균물질 생산을 위한 최적 배양조건 및 prebiotics의 영향)

  • Lim, Eun-Seo
    • Korean Journal of Microbiology
    • /
    • v.51 no.3
    • /
    • pp.288-299
    • /
    • 2015
  • Lactobacillus brevis BK11 obtained from Baikkimchi was selected to study the effects of culture medium, initial pH, atmosphere composition, incubation temperature and time, and prebiotics on growth and production of antimicrobial substances. Growth and antimicrobial substances production of L. brevis BK11 were significantly higher in MRS broth than in BHI or M17 broth. The production of cell mass, lactic acid, and bacteriocin by BK11 strain was at maximum in MRS broth adjusted to pH 6.0. Aerobic and microaerobic conditions were favored cell growth and antimicrobial substances production than anaerobic condition. Biomass and lactic acid production and antimicrobial substances activity of BK 11 were significantly better at 30 and $37^{\circ}C$ than at $25^{\circ}C$. Growth of the strain BK11 entered the stationary growth stage at 24 h after inoculation, and decreased after 36 h. Antimicrobial activities of cell-free culture supernatant and bacteriocin solution were highest when cultured in MRS broth with an initial pH 6.0 for 24-30 h at $37^{\circ}C$. In addition, the highest cell number and lactic acid and bacteriocin production were recorded in the presence of 1 and 2% (w/v) fructooligosaccharide (FOS), however, inulin and raffinose did not affect biological and physicochemical characteristics and antimicrobial activities of L. brevis BK11 cultures. According to these results, production of antimicrobial substances by L. brevis KB11 was closely associated with cell density. Under optimal conditions for antimicrobial substances production, L. brevis BK11 effectively inhibited the growth of Helicobacter pylori ATCC 43504.