DOI QR코드

DOI QR Code

Hydroxychavicol Inhibits In Vitro Osteoclastogenesis via the Suppression of NF-κB Signaling Pathway

  • Sirada Srihirun (Department of Pharmacology, Faculty of Dentistry, Mahidol University) ;
  • Satarat Mathithiphark (Faculty of Allied Health Sciences, Burapha University) ;
  • Chareerut Phruksaniyom (Department of Pharmacology, Faculty of Dentistry, Mahidol University) ;
  • Pitchanun Kongphanich (Faculty of Medicine Ramathibodi Hospital, Mahidol University) ;
  • Wisutthaporn Inthanop (Faculty of Medicine Ramathibodi Hospital, Mahidol University) ;
  • Thanaporn Sriwantana (Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University) ;
  • Salunya Tancharoen (Department of Pharmacology, Faculty of Dentistry, Mahidol University) ;
  • Nathawut Sibmooh (Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University) ;
  • Pornpun Vivithanaporn (Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University)
  • 투고 : 2023.03.27
  • 심사 : 2023.07.31
  • 발행 : 2024.03.01

초록

Hydroxychavicol, a primary active phenolic compound of betel leaves, previously inhibited bone loss in vivo by stimulating osteogenesis. However, the effect of hydroxychavicol on bone remodeling induced by osteoclasts is unknown. In this study, the anti-osteoclastogenic effects of hydroxychavicol and its mechanism were investigated in receptor activator of nuclear factor kappa-B ligand (RANKL)-induced osteoclasts. Hydroxychavicol reduced the number of tartrate resistance acid phosphatase (TRAP)-positive multinucleated, F-actin ring formation and bone-resorbing activity of osteoclasts differentiated from RAW264.7 cells in a concentration-dependent manner. Furthermore, hydroxychavicol decreased the expression of osteoclast-specific genes, including cathepsin K, MMP-9, and dendritic cell-specific transmembrane protein (DC-STAMP). For mechanistic studies, hydroxychavicol suppressed RANKL-induced expression of major transcription factors, including the nuclear factor of activated T-cells 1 (NFATc1), c-Fos, and c-Jun. At the early stage of osteoclast differentiation, hydroxychavicol blocked the phosphorylation of NF-κB subunits (p65 and Iκβα). This blockade led to the decrease of nuclear translocation of p65 induced by RANKL. In addition, the anti-osteoclastogenic effect of hydroxychavicol was confirmed by the inhibition of TRAP-positive multinucleated differentiation from human peripheral mononuclear cells (PBMCs). In conclusion, hydroxychavicol inhibits osteoclastogenesis by abrogating RANKL-induced NFATc1 expression by suppressing the NF-κB signaling pathway in vitro.

키워드

과제정보

This research study is supported by Specific League Funds from Mahidol University and Dean's Research Novice Award of the Faculty of Medicine Ramathibodi Hospital, Mahidol University. We acknowledge the facilities and technical assistance of the Research office, Faculty of Dentistry, Mahidol University. We would like to thank Mr. Sarut Thairat for his technical assistance for confocal microscopy.

참고문헌

  1. Abu-Amer, Y. (2013) NF-kappaB signaling and bone resorption. Osteoporos. Int. 24, 2377-2386. https://doi.org/10.1007/s00198-013-2313-x
  2. Adler, R. A. (2018) MANAGEMENT OF ENDOCRINE DISEASE: Atypical femoral fractures: risks and benefits of long-term treatment of osteoporosis with anti-resorptive therapy. Eur. J. Endocrinol. 178, R81-R87. https://doi.org/10.1530/EJE-17-1002
  3. Ali, I., Khan, F. G., Suri, K. A., Gupta, B. D., Satti, N. K., Dutt, P., Afrin, F., Qazi, G. N. and Khan, I. A. (2010) In vitro antifungal activity of hydroxychavicol isolated from Piper betle L. Ann. Clin. Microbiol. Antimicrob. 9, 7.
  4. Aliprantis, A. O., Ueki, Y., Sulyanto, R., Park, A., Sigrist, K. S., Sharma, S. M., Ostrowski, M. C., Olsen, B. R. and Glimcher, L. H. (2008) NFATc1 in mice represses osteoprotegerin during osteoclastogenesis and dissociates systemic osteopenia from inflammation in cherubism. J. Clin. Invest. 118, 3775-3789. https://doi.org/10.1172/JCI35711
  5. Bi, H., Chen, X., Gao, S., Yu, X., Xiao, J., Zhang, B., Liu, X. and Dai, M. (2017) Key triggers of osteoclast-related diseases and available strategies for targeted therapies: a review. Front. Med. (Lausanne) 4, 234.
  6. Biswas, P., Anand, U., Saha, S. C., Kant, N., Mishra, T., Masih, H., Bar, A., Pandey, D. K., Jha, N. K., Majumder, M., Das, N., Gadekar, V. S., Shekhawat, M. S., Kumar, M., Radha, Prockow, J., Lastra, J. M. P. and Dey, A. (2022) Betelvine (Piper betle L.): a comprehensive insight into its ethnopharmacology, phytochemistry, and pharmacological, biomedical and therapeutic attributes. J. Cell. Mol. Med. 26, 3083-3119. https://doi.org/10.1111/jcmm.17323
  7. Boyce, B. F., Xiu, Y., Li, J., Xing, L. and Yao, Z. (2015) NF-kappaB-mediated regulation of osteoclastogenesis. Endocrinol. Metab. (Seoul) 30, 35-44. https://doi.org/10.3803/EnM.2015.30.1.35
  8. Boyle, W. J., Simonet, W. S. and Lacey, D. L. (2003) Osteoclast differentiation and activation. Nature 423, 337-342. https://doi.org/10.1038/nature01658
  9. Chang, M. C., Uang, B. J., Tsai, C. Y., Wu, H. L., Lin, B. R., Lee, C. S., Chen, Y. J., Chang, C. H., Tsai, Y. L., Kao, C. J. and Jeng, J. H. (2007) Hydroxychavicol, a novel betel leaf component, inhibits platelet aggregation by suppression of cyclooxygenase, thromboxane production and calcium mobilization. Br. J. Pharmacol. 152, 73-82. https://doi.org/10.1038/sj.bjp.0707367
  10. Collin-Osdoby, P. and Osdoby, P. (2012) RANKL-mediated osteoclast formation from murine RAW 264.7 cells. Methods Mol. Biol. 816, 187-202. https://doi.org/10.1007/978-1-61779-415-5_13
  11. Cuetara, B. L., Crotti, T. N., O'donoghue, A. J. and Mchugh, K. P. (2006) Cloning and characterization of osteoclast precursors from the RAW264.7 cell line. In Vitro Cell. Dev. Biol Anim. 42, 182-188. https://doi.org/10.1290/0510075.1
  12. Deepak, V., Kasonga, A., Kruger, M. C. and Coetzee, M. (2015) Inhibitory effects of eugenol on RANKL-induced osteoclast formation via attenuation of NF-kappaB and MAPK pathways. Connect. Tissue Res. 56, 195-203. https://doi.org/10.3109/03008207.2014.989320
  13. Delaisse, J. M., Andersen, T. L., Kristensen, H. B., Jensen, P. R., Andreasen, C. M. and Soe, K. (2020) Re-thinking the bone remodeling cycle mechanism and the origin of bone loss. Bone 141, 115628.
  14. Gundala, S. R., Yang, C., Mukkavilli, R., Paranjpe, R., Brahmbhatt, M., Pannu, V., Cheng, A., Reid, M. D. and Aneja, R. (2014) Hydroxychavicol, a betel leaf component, inhibits prostate cancer through ROS-driven DNA damage and apoptosis. Toxicol. Appl. Pharmacol. 280, 86-96. https://doi.org/10.1016/j.taap.2014.07.012
  15. Han, G., Zuo, J. and Holliday, L. S. (2019) Specialized roles for actin in osteoclasts: unanswered questions and therapeutic opportunities. Biomolecules 9, 17.
  16. Kim, J. H. and Kim, N. (2014) Regulation of NFATc1 in osteoclast differentiation. J. Bone Metab. 21, 233-241. https://doi.org/10.11005/jbm.2014.21.4.233
  17. Kim, K., Lee, S. H., Ha Kim, J., Choi, Y. and Kim, N. (2008) NFATc1 induces osteoclast fusion via up-regulation of Atp6v0d2 and the dendritic cell-specific transmembrane protein (DC-STAMP). Mol. Endocrinol. 22, 176-185. https://doi.org/10.1210/me.2007-0237
  18. Kong, L., Smith, W. and Hao, D. (2019) Overview of RAW264.7 for osteoclastogensis study: phenotype and stimuli. J. Cell. Mol. Med. 23, 3077-3087. https://doi.org/10.1111/jcmm.14277
  19. Langdahl, B. L. (2021) Overview of treatment approaches to osteoporosis. Br. J. Pharmacol. 178, 1891-1906. https://doi.org/10.1111/bph.15024
  20. Lee, K., Seo, I., Choi, M. H. and Jeong, D. (2018) Roles of mitogen-activated protein kinases in osteoclast biology. Int. J. Mol. Sci. 19, 3004.
  21. Martiniakova, M., Babikova, M. and Omelka, R. (2020) Pharmacological agents and natural compounds: available treatments for osteoporosis. J. Physiol. Pharmacol. 71, 307-320.
  22. Maslikah, S. I., Lestari, S. R., Handayani, N., Putra, W. E., Alimah, A. R. N., Amalia, A., Afifah, S. and Arifah, S. N. (2023) The anti-Inflammatory potential of red betel (Piper crocatum) leaves through inhibitory mechanism on Nfκb signaling pathway: drug-like candidate study. Nat. Life Sci. Commun. 22, e2023005.
  23. Mercurio, F., Zhu, H., Murray, B. W., Shevchenko, A., Bennett, B. L., Li, J., Young, D. B., Barbosa, M., Mann, M., Manning, A. and Rao, A. (1997) IKK-1 and IKK-2: cytokine-activated IkappaB kinases essential for NF-kappaB activation. Science 278, 860-866. https://doi.org/10.1126/science.278.5339.860
  24. Mishra, R., Das, N., Varshney, R., Juneja, K., Sircar, D. and Roy, P. (2021) Betel leaf extract and its major component hydroxychavicol promote osteogenesis and alleviate glucocorticoid-induced osteoporosis in rats. Food Funct. 12, 6603-6625. https://doi.org/10.1039/D0FO02619K
  25. Palombella, V. J., Rando, O. J., Goldberg, A. L. and Maniatis, T. (1994) The ubiquitin-proteasome pathway is required for processing the NF-kappa B1 precursor protein and the activation of NF-kappa B. Cell 78, 773-785. https://doi.org/10.1016/S0092-8674(94)90482-0
  26. Park, J. H., Lee, N. K. and Lee, S. Y. (2017) Current understanding of RANK signaling in osteoclast differentiation and maturation. Mol. Cells 40, 706-713. https://doi.org/10.14348/molcells.2017.0225
  27. Rashid, S., Wilson, S. G., Zhu, K., Walsh, J. P., Xu, J. and Mullin, B. H. (2023) Identification of differentially expressed genes and molecular pathways involved in osteoclastogenesis using RNA-seq. Genes (Basel) 14, 916.
  28. Rolph, D. and Das, H. (2020) Transcriptional regulation of osteoclastogenesis: the emerging role of KLF2. Front. Immunol. 11, 937.
  29. Sarkar, D., Saha, P., Gamre, S., Bhattacharjee, S., Hariharan, C., Ganguly, S., Sen, R., Mandal, G., Chattopadhyay, S., Majumdar, S. and Chatterjee, M. (2008) Anti-inflammatory effect of allylpyrocatechol in LPS-induced macrophages is mediated by suppression of iNOS and COX-2 via the NF-kappaB pathway. Int. Immunopharmacol. 8, 1264-1271. https://doi.org/10.1016/j.intimp.2008.05.003
  30. Scott, M. L., Fujita, T., Liou, H. C., Nolan, G. P. and Baltimore, D. (1993) The p65 subunit of NF-kappa B regulates I kappa B by two distinct mechanisms. Genes Dev. 7, 1266-1276. https://doi.org/10.1101/gad.7.7a.1266
  31. Seo, J., Lee, U., Seo, S., Wibowo, A. E., Pongtuluran, O. B., Lee, K., Han, S. B. and Cho, S. (2022) Anti-inflammatory and antioxidant activities of methanol extract of Piper betle Linn. (Piper betle L.) leaves and stems by inhibiting NF-kappaB/MAPK/Nrf2 signaling pathways in RAW 264.7 macrophages. Biomed. Pharmacother. 155, 113734.
  32. Sharma, S., Khan, I. A., Ali, I., Ali, F., Kumar, M., Kumar, A., Johri, R. K., Abdullah, S. T., Bani, S., Pandey, A., Suri, K. A., Gupta, B. D., Satti, N. K., Dutt, P. and Qazi, G. N. (2009) Evaluation of the antimicrobial, antioxidant, and anti-inflammatory activities of hydroxychavicol for its potential use as an oral care agent. Antimicrob. Agents Chemother. 53, 216-222. https://doi.org/10.1128/AAC.00045-08
  33. Song, C., Yang, X., Lei, Y., Zhang, Z., Smith, W., Yan, J. and Kong, L. (2019) Evaluation of efficacy on RANKL induced osteoclast from RAW264.7 cells. J. Cell. Physiol. 234, 11969-11975. https://doi.org/10.1002/jcp.27852
  34. Takayanagi, H. (2007) The role of NFAT in osteoclast formation. Ann. N. Y. Acad. Sci. 1116, 227-237. https://doi.org/10.1196/annals.1402.071
  35. Udagawa, N., Koide, M., Nakamura, M., Nakamichi, Y., Yamashita, T., Uehara, S., Kobayashi, Y., Furuya, Y., Yasuda, H., Fukuda, C. and Tsuda, E. (2021) Osteoclast differentiation by RANKL and OPG signaling pathways. J. Bone Miner. Metab. 39, 19-26. https://doi.org/10.1007/s00774-020-01162-6
  36. Vaananen, H. K., Zhao, H., Mulari, M. and Halleen, J. M. (2000) The cell biology of osteoclast function. J. Cell Sci. 113, 377-381. https://doi.org/10.1242/jcs.113.3.377
  37. Zhao, Q., Shao, J., Chen, W. and Li, Y. P. (2007) Osteoclast differentiation and gene regulation. Front. Biosci. 12, 2519-2529. https://doi.org/10.2741/2252