Browse > Article
http://dx.doi.org/10.7845/kjm.2015.5038

Optimal conditions and effects of prebiotics for growth and antimicrobial substances production of Lactobacillus brevis BK11  

Lim, Eun-Seo (Department of Food Science and Nutrition, Tongmyong University)
Publication Information
Korean Journal of Microbiology / v.51, no.3, 2015 , pp. 288-299 More about this Journal
Abstract
Lactobacillus brevis BK11 obtained from Baikkimchi was selected to study the effects of culture medium, initial pH, atmosphere composition, incubation temperature and time, and prebiotics on growth and production of antimicrobial substances. Growth and antimicrobial substances production of L. brevis BK11 were significantly higher in MRS broth than in BHI or M17 broth. The production of cell mass, lactic acid, and bacteriocin by BK11 strain was at maximum in MRS broth adjusted to pH 6.0. Aerobic and microaerobic conditions were favored cell growth and antimicrobial substances production than anaerobic condition. Biomass and lactic acid production and antimicrobial substances activity of BK 11 were significantly better at 30 and $37^{\circ}C$ than at $25^{\circ}C$. Growth of the strain BK11 entered the stationary growth stage at 24 h after inoculation, and decreased after 36 h. Antimicrobial activities of cell-free culture supernatant and bacteriocin solution were highest when cultured in MRS broth with an initial pH 6.0 for 24-30 h at $37^{\circ}C$. In addition, the highest cell number and lactic acid and bacteriocin production were recorded in the presence of 1 and 2% (w/v) fructooligosaccharide (FOS), however, inulin and raffinose did not affect biological and physicochemical characteristics and antimicrobial activities of L. brevis BK11 cultures. According to these results, production of antimicrobial substances by L. brevis KB11 was closely associated with cell density. Under optimal conditions for antimicrobial substances production, L. brevis BK11 effectively inhibited the growth of Helicobacter pylori ATCC 43504.
Keywords
Helicobacter pylori; antimicrobial activity; bacteriocin; prebiotic; probiotic;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Taheri, P., Samadi, N., Ehsani, M.R., Khoshayand, M.R., and Jamalifar, H. 2012. An evaluation and partial characterization of a bacteriocin produced by Latococcus lactis subsp. lactis ST1 isolated from goat milk. Braz. J. Microbiol. 43, 1452-1462.   DOI
2 Tongtawee, T., Dechsukhum, C., Leeanansaksiri, W., Kaewpitoon, S., Kaewpitoon, N., Loyd, R.A., Matrakool, L., and Panpimanmas, S. 2015. Effect of pretreatment with Lactobacillus delbrueckii and Streptococcus thermophillus on tailored triple therapy for Helicobacter pylori eradication: A prospective randomized controlled clinical trial. Asian Pac. J. Cancer Prev. 16, 4885-4890.   DOI
3 Tsai, C.C., Huang, L.F., Lin, C.C., and Tsen, H.Y. 2004. Antagonistic activity against Helicobacter pylori infection in vitro by a strain of Enterococcus faecium TM39. Int. F. Food Microbiol. 96, 1-12.   DOI
4 Vakil, N. and Megraud, F. 2007. Eradication therapy for Helicobacter pylori. Gastroenterology 133, 985-1001.   DOI
5 Verellen, T.L.J., Bruggeman, G., Van Reenen, C.A., Dicks, L.M.T., and Vandamme, E.J. 1998. Fermentation optimization of plantaricin 423, a bacteriocin produced by Lactobacillus plantarum 423. J. Ferment. Bioeng. 86, 147-179.
6 Vitor, J.M. and Vale, F.F. 2011. Alternative therapies for Helicobacter pylori: probiotics and phytomedicine. FEMS Immunol. Med. Microbiol. 63, 153-164.   DOI
7 Wee, Y.J., Kim, J.N., Yun, J.S., and Ryu, H.W. 2005. Optimum conditions for the biological production of lactic acid by a newly isolated lactic acid bacterium, Lactobacillus sp. RKY2. Biotechnol. Bioprocess Eng. 10, 23-28.   DOI
8 Yoo, I.K., Chang, H.N., Lee, E.G., Chang, Y.K., and Moon, S.H. 1996. Effect of pH on the production of lactic acid and secondary products in batch cultures of Lactobacillus casei. J. Microbiol. Biotechnol. 6, 482-486.
9 Yoo, J.Y., Lee, I.S., Chung, K.S., Choi, S.Y., Koo, Y.J., and Kwon, D.J. 1992. Cultural conditions of Lactococcus sp. 112-1 for production of bacteriocin-like substance. Kor. J. Appl. Microbiol. Biotechnol. 20, 183-189.
10 Aiba, Y., Suzuki, N., Kabir, A.M., Takagi, A., and Koga, Y. 1998. Lactic acid-mediated suppression of Helicobacter pylori of Lactobacillus salivarius as a probiotic in gnotobiotic murine model. Am. J. Gastroenterol. 93, 2097-2101.   DOI
11 Al-Jumaily, E., Raheema, R.H., and Abdul-Ratha, H.A. 2014. Optimal conditions for acidocin production from Lactobacillus acidophilus isolate. World J. Pharm. Res. 3, 1773-1785.
12 Aslam, M., Shahid, M., Ur Rehman, F., Murtaza, M.A., Sharif, S., Ata, A., and Noor, S. 2012. Production optimization and characterization of a low molecular weight bacteriocin from Lactococcus lactis subsp. lactis. Afr. J. Microbiol. Res. 6, 5924-5933.
13 Audisio, M.C., Oliver, G., and Apella, M.C. 2001. Effect of different complex carbon sources on growth and bacteriocin synthesis of Enterococcus faecium. Int. J. Food Microbiol. 63, 235-241.   DOI
14 Biswas, S.R., Ray, P., Johnson, M.C., and Ray, B. 1991. Influence of growth conditions on the production of a bacteriocin, pediocin AcH, by Pediococcus acidilactici H. Appl. Environ. Microbiol. 57, 1265-1267.
15 Chin, H.S., Shim, J.S., Kim, J.M., Yang, R., and Yoon, S.S. 2001. Detection and antibacterial activity of a bacteriocin produced by Lactobacillus plantarum. Food Sci. Biotechnol. 10, 461-467.
16 Cabo, M.L., Murado, M.A., Gonza'lez, M.P., and Pastoriza, L. 2001. Effects of aeration and pH gradient on nisin production. A mathematical model. Enzyme Microb. Tech. 29, 264-273.   DOI
17 Chen, X., Liu, X.M., Tian, F., Zhang, Q., Zhang, H.P., Zhang, H., and Chen, W. 2011. Antagonistic activities of lactobacilli against Helicobacter pylori growth and infection in human gastric epithelial cells. J. Food Sci. 71, M9-M14.
18 Chen, Y.S., Srionnual, S., Onda, T., and Yanagida, F. 2007. Effects of prebiotic oligosaccharides and trehalose on growth and production of bacteriocins by lactic acid bacteria. Lett. Appl. Microbiol. 45, 190-193.   DOI
19 Cho, H.Y., Yousef, A.E., and Yang, S.T. 1996. Continuous production of pediocin by immobilized Pediococcus acidilactici PO2 in a packed-bed bioreactor. Appl. Microbiol. Biotechnol. 45, 589-594.   DOI
20 Coconnier, M.H., Lievin, V., Hemery, E., and Servin, A.L. 1998. Antagonistic activity against Helicobacter infection in vitro and in vivo by the human Lactobacillus acidophilus strain LB. Appl. Environ. Microbiol. 64, 4573-4580.
21 Crittenden, R.G. 1999. Prebiotics, Probiotics: A Critical Review, pp. 141-156. In Tannock, G.W. (ed.), Horizon Scientific Press, Wymondham.
22 Daba, H., Pandian, S., Gosselin, J.F., Simard, R.E., Huang, J., and Lacroix, C. 1993. Detection and activity of a bacteriocin by Leuconostoc mesenteroides. Appl. Environ. Microbiol. 57, 3450-3455.
23 Deegan, L.H., Cotter, P.D., Hill, C., and Ross, P. 2006. Bacteriocins:Biological tools for bio-preservation and shelf-life extension. Int. Dairy J. 16, 1058-1071.   DOI
24 De Lima, C.J.B., Coelho, L.F., and Contiero, J. 2010. The use of response surface methodology in optimization of lactic acid production: Focus on medium supplementation, temperature and pH control. Food Technol. Biotechnol. 48, 175-181.
25 De Vuyst, L. and Vandamme, E.J. 1992. Influence of the phosphorus and nitrogen source of nisin production in Lactococcus lactis subsp. lactis batch fermentations using a complex medium. Appl. Microbiol. Biotechnol. 40, 17-22.
26 De Vuyst, L. and Vandamme, E.J. 1993. Influence of the phosphorus and nitrogen source on nisin production in Lactococcus lactis subsp. lactis batch fermentations using a complex medium. Appl. Microbiol. Biotechnol. 40, 17-22.   DOI
27 Devriese, L.A., Pot, B., and Collins, M.D. 1993. A review. Phenotypic identification of the genus Enterococcus and differentiation of phylogenetically distinct enterococcal species and species group. J. Appl. Bacteriol. 75, 399-408.   DOI
28 Egan, B.J., Katicic, M., O'connor, H.J., and O'Morain, C.A. 2007. Treatment of Helicobacter pylori. Helicobacter 12, 31-37.   DOI   ScienceOn
29 Farinha, L.L., Sabo, S.S., Porto, M.C., Souza, E.C., Oliveira, M.N., and Oliveira, R.P.S. 2015. Influence of prebiotic ingredients on the growth kinetics and bacteriocin production of Lactococcus lactis. Chem. Eng. 43, 313-318.
30 Fukushima, H., Kelstrup, J., Fukushima, S., Umemoto T., and Sagawa, H. 1983. Isolation, partial purification and preliminary characterization of a bacteriocin from Streptococcus mutants Rm-10. Antonie van Leeuwenhoek 49, 41-50.   DOI
31 Gotteland, M., Brunser, O., and Cruchet S. 2006. Systematic review:Are probiotics useful in controlling gastric colonization by Helicobacter pylori? Aliment Pharmacol. Ther. 23, 1077-1086.   DOI   ScienceOn
32 Fuller, R. 1989. Probiotics in man and animals. J. Appl. Bacteriol. 66, 365-378.   DOI
33 Gibson, G.R. and Roberfroid, M.B. 1995. Dietary modulation of the human colonic microbiota: Introducing the concept of prebiotics. J. Nutr. 125, 1401-1412.
34 Goderska, K., Nowak, J., and Czarnecki, Z. 2008. Comparison of the growth of Lactobacillus acidophilus and Bifidobacterium bifidium species in media supplemented with selected saccharides including prebiotics. Acta. Sci. Pol. Tehcnol. Aliment. 7, 5-20.
35 Guerra, N.P., Rua, M.L., and Pastrana, L. 2001. Nutritional factors affecting the production of two bacteriocins from lactic acid bacteria on whey. Int. J. Food Microbiol. 70, 267-281.   DOI
36 Hirsch, A. 1951. Grwoth and nisin production of a strain of Streptococcus lactis. J. Gen. Microbiol. 5, 208-221.   DOI
37 Hole, H., Nilssen, O., and Nes, I.F. 1991. Lactococcin A, a new bacteriocin from Lactococcus lactis subsp. cremoris: Isolation and characterization of the protein and its gene. J. Bacteriol. 173, 3879-3887.   DOI
38 Joosten, H.M.L.J. and Nunez, M. 1995. Adsorption of nisin and enterocin 4 to polypropylene and glass surface and its prevention by Tween 80. Lett. Appl. Microbiol. 21, 389-392.   DOI
39 Jozala, A.F., De Andrade, M.S., De Arauz, L.J., Pessoa, A.J., and Penna, T.C. 2007. Nisin production utilizing skimmed milk aiming to reduce process cost. Appl. Biochem. Biotechnol. 137, 515-528.
40 Juarez Tomas, M.S., Bru, E., Wiese, B., De Ruiz Holgado, A.A.P., and Nader-Macias, M.E. 2002. Influence of pH, temperature and culture media on the growth and bacteriocin production by vaginal Lactobacillus salivarius CRL 1328. J. Appl. Microbiol. 93, 714-724.   DOI
41 Juarez Tomas, M.S., Ocana, V.S., Wiese, B., and Nader-Macias, M.E. 2003. Growth and lactic acid production by vaginal Lactobacillus acidophilus CRL 1259, and inhibition of uropathogenic Escherichia coli. J. Med. Microbiol. 52, 1117-1124.   DOI
42 Kim, W.S., Hall, R.J., and Dunn, N.W. 1997. The effect of nisin concentration and nutrient depletion on nisin production of Lactococcus lactis. Appl. Microbiol. Biotechnol. 136, 1591-1599.
43 Kim, T.S., Hur, J.W., Yu, M.A., Cheigh, C.I., Kim, K.N., Hwang, J.K., and Pyun, Y.R. 2003. Antagonism of Helicobacter pylori by bacteriocins of lactic acid bacteria. J. Food Prot. 66, 3-12.   DOI
44 Kondepudi, K.K., Ambalam, P., Nilsson, I., Wadstrom, W., and Ljungh, A. 2012. Prebiotic-digestible oligosaccharides preference of probiotic bifidobacteria and antimicrobioal activity against Clostridium difficile. Anaerobe 18, 489-497.   DOI   ScienceOn
45 Kusters, J.G., Van Vliet, A.H.M., and Kuipers, E.J. 2006. Pathogenesis of Helicobacter pylori infection. Clin. Microbiol. Rev. 19, 449-490.   DOI
46 Lee, N.K., Kim, K.T., Kim, C.J., and Paik, H.D. 2004. Optimized production of lacticin NK24, a bacteriocin produced by Lactococcus lactis NK24 isolated from Jeot-gal. Food Sci. Biotechnol. 13, 6-10.
47 Leroy, F. and De Vuyst, L. 1999. Temperature and pH conditions that prevail during fermentation of sausages are optimal for production of the antilisterial bacteriocin sakacin K. Appl. Environ. Microbiol. 65, 974-981.
48 Lim, S.M. 2014. Anti-Helicobacter pylori activity of antimicrobial substances produced by lactic acid bacteria isolated from baikkimchi. J. Kor. Soc. Appl. Biol. Chem. 57, 621-630.   DOI
49 Leroy, F., Vankrunkelsven, S., De Greef, J., and De Vuyst, L. 2003. The stimulating effect of a harsh environment on the bacteriocin activity by Enterococcus faecium RZS C5 and dependency on the environmental stress factor used. Int. J. Food Microbiol. 83, 27-38.   DOI
50 Lesbros-Pantoflickova, D., Corthesy-Theulaz, I., and Blum, A.L. 2007. Helicobacter pylori and probiotics. J. Nutr. 137, 812S-818S.   DOI
51 Mahrous, H., Mohamed, A., El-Mongy, A., El-Batal, A.I., and Hamza, H.A. 2013. Study bacteriocin production and optimization using new isolates of Lactobacillus spp. isolated from some dairy products under different culture conditions. Food Nutr. Sci. 4, 342-356.   DOI
52 Makelainen, H., Saarien, M., Stowell, J., Rautonen, N., and Ouwehand, A.C. 2010. Xylo-oligosaccharides and lactitol promote the growth of Bifidobacterium lactis and Lactobacillus species in pure cultures. Benef. Microbes 1, 139-148.   DOI
53 Marshall, B.J. and Warren, J.R. 1984. Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet 1, 1311-1315.
54 Matsusaki, H., Endo, N., Sonomoto, K., and Ishikazi, A. 1996. Lantibiotics nisin Z fermentative production by Lactococcus lactis IO-1: relationship between production of the lantibiotic and lactate and cell growth. Appl. Microbiol. Biotechnol. 45, 36-40.   DOI
55 Megraud, F., Coenen, S., Versporten, A., Kist, M., Lopez-Brea, M., Hirsch, A.M., Andersen, L.P., Goossens, H., and Glupczynski, Y. 2013. Helicobacter pylori resistance to antibiotics in Europe and its relationship to antibiotic consumption. Gut 62, 34-42.   DOI
56 Ogunbanwo, S.T., Sanni, A.I., and Onilude, A.A. 2003. Influence of cultural conditions on the production of bacteriocin by Lactobacillus brevis OG1. Afr. J. Biotechnol. 2, 179-184.   DOI
57 Mitra, S., Chakrabartty, P.K., and Biswas, S.R. 2007. Production of nisin A by Lactococcus lactis isolated from Dahi. Appl. Biochem. Biotechnol. 143, 41-53.   DOI
58 Munoz, M., Mosquera, A., Almeciga-Diaz, C.J., Melendez, A.P., and Sanchez, O.F. 2012. Fructooligosaccharides metabolism and effect on bacteriocin production in Lactobacillus strains isolated from ensiled corn and molasses. Anaerobe 18, 321-330.   DOI
59 Nam, H., Ha, M., Bae, O., and Lee, Y. 2002. Effect of Weissella confuse strain PL9001 on the adherence and growth of Helicobacter pylori. Appl. Environ. Microbiol. 68, 4642-4645.   DOI
60 Parente, E. and Ricciardi, A. 1999. Production, recovery and purification of bacteriocins from lactic acid bacteria. Appl. Microbiol. Biotechnol. 52, 628-638.   DOI
61 Rattanachaikunsopon, P. and Phumkhachorn, P. 2010. Lactic acid bacteria: their antimicrobial compounds and their uses in food production. Ann. Biol. Res. 1, 218-228.
62 Sgouras, D., Maragkoudakis, P., Petraki, K., Martinez-Gonzalez, B., Eriotou, E., Michopoulos, S., Kalantzopoulos, G., Tsakalidou, E., and Mentis, A. 2004. In vitro and in vivo inhibition of Helicobacter pylori by Lactobacillus casei strain Shirota. Appl. Environ. Microbiol. 70, 518-526.   DOI
63 Sousa, M.N.B., Mendes, E.N., Apolonio, A.C.M., Farias, L.D.M., and Magalha, E.S. 2010. Bacteriocin production by Shigella sonnei isolated from faeces of children with acute diarrhea. APMIS 118, 125-135.   DOI