• Title/Summary/Keyword: butyrylcholinesterase

Search Result 64, Processing Time 0.028 seconds

Production of an Anti-dementia Butyrylcholinesterase Inhibitor from Non-pathogenic Wild Yeast, Saccharomyces cerevisiae WJSL 0113 (비병원성 야생효모 Saccharomyces cerevisiae WJSL 0113으로부터 항치매성 Butyrylcholinesterase 저해물질의 생산)

  • Han, Sang-Min;Park, Seon-Jeong;Jang, Ji-Eun;Lee, Jong-Soo
    • The Korean Journal of Mycology
    • /
    • v.49 no.2
    • /
    • pp.243-248
    • /
    • 2021
  • In this study, screening of potent non-pathogenic wild yeast with high anti-dementia butyrylcholinesterase (BChE) inhibitory activity and production condition of a BChE inhibitor were described. Among 36 non-pathogenic wild yeasts, Saccharomyces cerevisiae WJSL 0113 showed the highest BChE inhibitory activity of 85.2%. The specific BChE inhibitor was maximally produced when S. cerevisiae WJSL 0113 was cultured at 30℃ for 48 h in a yeast extract-peptone-dextrose medium.

New Butyrylcholinesterase Inhibitory Triterpenes from Salvia santolinifolia

  • Mehmood Sajid;Riaz Naheed;Nawaz Sarfraz Ahmed;Afza Nighat;Malik Abdul;Choudhary Muhammad Iqbal
    • Archives of Pharmacal Research
    • /
    • v.29 no.3
    • /
    • pp.195-198
    • /
    • 2006
  • Slavins A (1) and B (2), the new amyrin type triterpenes, have been isolated from the chloroform soluble fraction of Salvia santolinifolia and assigned structures on the basis of spectral studies including 2D NMR. Both the compounds displayed inhibitory potential against the enzyme butyrylcholinesterase.

Characterization of Black Ginseng Extract with Acetyl- and Butyrylcholinesterase Inhibitory and Antioxidant Activities

  • Yun, Beom-Sik;Lee, Mi-Ra;Oh, Chang-Jin;Cho, Jeong-Hee;Wang, Chun-Yan;Gu, Li Juan;Mo, Eun-Kyung;Sung, Chang-Keun
    • Journal of Ginseng Research
    • /
    • v.34 no.4
    • /
    • pp.348-354
    • /
    • 2010
  • Black ginseng and white ginseng were extracted with 80% ethanol and evaluated for relative ginsenoside composition, acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities, and antioxidant properties. As analyzed by HPLC, black ginseng contained a greater proportion of ginsenoside $Rg_3$ compared to white ginseng. White ginseng was characterized by undetectable ginsenoside $Rg_3$ but it contained more total ginsenosides than black ginseng. Black ginseng extract exhibited higher (p<0.05) free radical-scavenging activity, as well as higher antioxidant activities than white ginseng against 2,2-diphenyl-1-picryl-hydrazyl, superoxide dismutase, and xanthine oxidase, despite the fact that the total saponin content was higher in white ginseng than black ginseng. In addition, the black ginseng extract displayed greater AChE and BChE inhibitory activities. These results suggest that black ginseng has stronger effects on anti-oxidation and AChE and BChE inhibition than white ginseng.

Cholinesterase Inhibitory Constituents from Capsosiphon fulvescens

  • Fang, Zhe;Jeong, Su Yang;Choi, Jae Sue;Min, Byung Sun;Min, Bo Kyung;Woo, Mi Hee
    • Natural Product Sciences
    • /
    • v.18 no.4
    • /
    • pp.233-238
    • /
    • 2012
  • Nine compounds (1 - 9), ${\alpha}$-linolenic acid (1), cis-5,8,11,14,17-elcosapentaenoic acid (2), phytol (3), loliolide (4), uridine (5), thymidine (6), deoxyadenosine (7), adenine (8), and adenosine (9), were isolated from the n-hexane, methylene chloride, ethyl acetate and n-butanol fractions of Capsosiphon fulvescens. The structures of these compounds were elucidated on the basis of spectroscopic evidence. Compounds 1 - 9 exhibited acetylcholinesterase (AChE) inhibitory activities with $IC_{50}$ values ranging from 114.91 to $252.40{\mu}M$, whereas 2 - 4 showed butyrylcholinesterase (BChE) inhibitory activities with $IC_{50}$ values ranging from 251.18 to $499.16{\mu}M$.

Gas Chromatographic Analysis and Cholinesterase Activity of the Essential Oil from Korean Agastache rugosa (기체크로마토그래피에 의한 한국산 배초향의 정유 분석과 Cholinesterase 억제활성)

  • Choi, Jae Sue;Song, Byong-Min;Park, Hee-Juhn
    • Korean Journal of Pharmacognosy
    • /
    • v.47 no.2
    • /
    • pp.192-196
    • /
    • 2016
  • The herb of Agastache rugosa (Lamiaceae) called Korean mint as a spice or Agastache Herba as a crude drug is known to contain highly fragrant volatile substances. This research aimed to establish the quantitative gas chromatography (GC) method on the essential oil of A. rugosa using the three standard compounds, estragole, methyleugenol, pulegone, and to find whether the essential oil has anti-Alzheimer's activity. The GC quantification method was established by determining the linearity of calibration curve ($R^2$), linear range, and both limit-of-detection (LOD) and limit-of-quantification (LOQ). The $IC_{50}$ of the essential oil on the activities of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) were determined to be $69.06{\pm}0.26$ and $76.71{\pm}0.58{\mu}g/ml$, respectively.

Cholinesterase Inhibitors Isolated from the Fruits Extract of Evodia officinalis (오수유의 Cholinesterase 저해활성 성분)

  • Lee, Ji-Young;Cha, Mi-Ran;Choi, Chun-Whan;Kim, Young-Sup;Lee, Bong-Ho;Ryu, Shi-Yong
    • Korean Journal of Pharmacognosy
    • /
    • v.43 no.2
    • /
    • pp.122-126
    • /
    • 2012
  • The MeOH extract of Evodiae Fructus exhibited a significant inhibition on the acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), in a dose dependent manner, respectively. The extensive bioactivity-guided fractionation process with the MeOH extract finally isolated four compounds, as rutaecarpine (1), evodiamine (2), limonin (3) and dehydroevodiamine (4). Among them, compound 2 exhibited specific inhibitory activity on BChE with the $IC_{50}$ values 1.7 ${\mu}g/ml$, whereas compound 4 showed the potent inhibition upon both AChE and BChE.

Sesquiterpenoids from the heartwood of Juniperu s chinensis

  • Jung, Hee Jin;Min, Byung-Sun;Jung, Hyun Ah;Choi, Jae Sue
    • Natural Product Sciences
    • /
    • v.23 no.3
    • /
    • pp.208-212
    • /
    • 2017
  • A new sesquiterpenoid, 11-hydroxy-valenc-1(10),3(4)-dien-2-one (3), two chemically synthesized but first isolate from nature, $3-oxocedran-8{\beta}-ol$ (1) and valenc-1(10),3(4),11(12)-trien-2-one (2) along with four known compounds, sugiol (4), (+)-nootkatone (5), 11-hydroxy-valenc-1(10)-en-2-one (6), and clovandiol (7), were isolated from the heartwood of Juniperus chinensis. All chemical structures were elucidated using extensive spectroscopic analysis including 1D and 2D NMR spectroscopy. Valenc-1(10),3(4),11(12)-trien-2-one (2) exhibited significant inhibitory activity against butyrylcholinesterase with an $IC_{50}$ value of $68.45{\mu}M$.

A specific butyrylcholinesterase inhibitor from the fruits of Evodia officinalis

  • Kim, Young-Sup;Kim, Jeoung-Seob;Kim, Seong-Kie;Heor, Jung-Hee;Lee, Woo-Lak;Lee, Bong-Ho;Choi, Byuoung-Wook;Ryu, Geon-Seek;Park, Eun-Kyung;Ryu, Shi-Yong
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.377.1-377.1
    • /
    • 2002
  • Neuroscience and molecular biology studies show that inappropriate butyrylcholinesterase (BuChE) activity as well as acetylcholinesterase (AChE) activity increases the risk and/or progression of Alzheimer's disease. BuChE may also regarded to participate in the transformation of Abeta (${\beta}$-amyloid) from an initially benign form to an eventually malignant form associated with neuritic tissue degeneration and clinical dementia. (omitted)

  • PDF

Selective Butyrylcholinesterase Inhibitors Using Polyphenol-polyphenol Hybrid Molecules

  • Woo, Yeun-Ji;Lee, Bo-Hyun;Yeun, Go-Heum;Kim, Hyun-Ju;Won, Moo-Ho;Kim, Sang-Hern;Lee, Bong-Ho;Park, Jeong-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.8
    • /
    • pp.2593-2598
    • /
    • 2011
  • Polyphenols (PPs) are known as antioxidant compounds having benign biological activities. In this paper, a series of hybrid molecules between the free or acetyl protected polyphenol compounds were synthesized and their in vitro antioxidant activity (DPPH assay) and cholinesterase [acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE)] inhibition activities were evaluated. As expected, free phenolic hybrid compounds (6 and 8) showed better antioxidant activity than acetyl protected hybrid compounds (5 and 7) from DPPH assay. But the contrast result was obtained from BuChE inhibition assay. Acetyl protected hybrid compounds (5 and 7) showed better inhibition activity for BuChE than free phenolic hybrid compounds (6 and 8). Specifically, 10 (AcFA-AcFA) were shown as an effective inhibitor of BuChE ($IC_{50}=2.3{\pm}0.3{\mu}M$) and also had a great selectivity for BuChE over AChE (more than 170 fold). Inhibition kinetic studies with acetyl protected compounds (5, 7, 9, and 10) indicated that 5, 7 and 10 are a hyperbolic mixed-type inhibition and 10 is a competitive inhibition type. The binding affinity (Ki) value of 10 to BuChE is $2.32{\pm}0.15{\mu}M$.

Synthesis of Selective Butyrylcholinesterase Inhibitors Coupled between α-Lipoic Acid and Polyphenols by Using 2-(Piperazin-1-yl)ethanol Linker

  • Yeun, Go Heum;Lee, Seung Hwan;Lim, Yong Bae;Lee, Hye Sook;Won, Moo-Ho;Lee, Bong Ho;Park, Jeong Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.4
    • /
    • pp.1025-1029
    • /
    • 2013
  • In the previous paper (Bull. Korean Chem. Soc., 2011, 32, 2997), the hybrid molecules between ${\alpha}$-lipoic acid (ALA) and polyphenols (PPs) connected with neutral 2-(2-aminoethoxy)ethanol linker (linker-1) showed new biological activity such as butyrylcholinesterase (BuChE) inhibition. In order to increase the binding affinity of the hybrid compounds to cholinesterase (ChE), the neutral 2-(2-aminoethoxy)ethanol (linker 1) was switched to the cationic 2-(piperazin-1-yl)ethanol linker (linker 2). The $IC_{50}$ values of the linker-2 hybrid molecules for BuChE inhibition were lower than those of linker-1 hybrid molecules (except 9-2) and they also had the same great selectivity for BuChE over AChE (> 800 fold) as linker-1 hybrid molecules. ALA-acetyl caffeic acid (10-2, ALA-AcCA) was shown as an effective inhibitor of BuChE ($IC_{50}=0.44{\pm}0.24{\mu}M$). A kinetic study using 7-2 showed that it is the same mixed type inhibition as 7-1. Its inhibition constant (Ki) to BuChE is $4.3{\pm}0.09{\mu}M$.