• Title/Summary/Keyword: buoyancy method

Search Result 200, Processing Time 0.032 seconds

Use of rotating disk for Darcy-Forchheimer flow of nanofluid; Similarity transformation through porous media

  • Hussain, Muzamal;Sharif, Humaira;Khadimallah, Mohamed Amine;Ayed, Hamdi;Banoqitah, Essam Mohammed;Loukil, Hassen;Ali, Imam;Mahmoud, S.R.;Tounsi, Abdelouahed
    • Computers and Concrete
    • /
    • v.30 no.1
    • /
    • pp.1-8
    • /
    • 2022
  • The basic purpose of the current study is to compute the numerical analysis of heat source/sink for Darcy-Forchheimer three dimensional nanofluid flow with gyrotactic microorganism by rotatable disk via porous media under the slip conditions. Due to nanoparticles, random and thermophoretic motion phenomenon occurs. The governing mathematical model is handled numerically by shooting method. Additionally, the characteristics of velocities, mass, heat, motile microorganisms and associated parameters are thoroughly analyzed via plots and tables. Different physical parameters like Forchheimer number, slip parameters like velocity, porosity parameter, Prandtl number, Brownian number, thermophoresis parameter, heat sink/source parameter, bioconvected Rayleigh number, buoyancy parameteron dimensionless velocities, temperature. Approximate values of Sherwood microorganism are analyzed.

Numerical Simulation for Near Field-Behavior of Wastewater Discharged into Stagnant Ambient in Coastal Region (연안지역의 정체수역에서 방류되는 하$\cdot$폐수의 근역거동 수치모의)

  • Kwon, Seok-Jae;Seo, Il-Won
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.17 no.3
    • /
    • pp.166-177
    • /
    • 2005
  • This study developed the jet integral model to analyze the behavior of the wastewater discharge in the near field using the fourth order Runge-Kutta method in order to numerically solve the problems of six ordinary differential equations and six unknowns. This jet integral model used the entrainment hypothesis and the manipulation of sonle shape constant. This study also conducted the hydraulic experiments fnr single horizontal buoyant Jet using LIF through the calibration procedure. The results calculated by the previous models, CORMIX 1 and VISJET, and the proposed jet integral model were compared to the hydraulic experimental results. The centerline trajectories predicted by the proposed model were in good agreements with the experimental results in the transition region whereas the trajectories calculated by the VISJET model agreed well with the measured data in the momentum and buoyancy-dominated regions. The centerline dilution calculated by the proposed model agreed generally with the measured dilution in the intial and transition regions while the centerline dilution predicted by the CORMIX 1 was in good agreements with the experimental results in the momentum and buoyancy-dominated regions.

Collision Analysis of Submerged Floating Tunnel by Underwater Navigating Vessel (수중운항체에 대한 해중터널의 충돌해석)

  • Hong, Kwan-Young;Lee, Gye-Hee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.5
    • /
    • pp.369-377
    • /
    • 2014
  • In this paper, to recognize the collision behavior between a submerged floating tunnel(SFT) and underwater navigation vessel(UNV), both structures are modeled and analyzed. The SFT of collision point is modeled tubular section using concrete with steel lining. The other part of SFT is modeled elastic beam elements. Mooring lines are modeled as cable elements with tension. The under water navigation vessel is assumed 1800DT submarine and its total mass at collision is obtained with hydrodynamic added mass. The buoyancy force on SFT is included in initial condition using dynamic relaxation method. The buoyancy ratio (B/W) and the collision speed are considered as the collision conditions. As results, energy dissipation is concentrated on the SFT and that of the UNV is minor. Additionally, the collision behaviors are greatly affected by B/W and the tension of mooring lines. Especially, the collision forces are shown different tendency compare to vessel collision force of current design code.

Numerical simulation of dense interflow using the k-ε turbulence model (k-ε 난류모형을 이용한 중층 밀도류의 수치모의)

  • Choi, Seongwook;Choi, Sung-Uk
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.9
    • /
    • pp.637-646
    • /
    • 2017
  • This study presents a numerical model for simulating dense interflows. The governing equations are provided and the finite difference method is used with the $k-{\varepsilon}$ turbulence model. The model is used to simulate a dense interflow established in a deep ambient water, resulting velocity and excess density profiles. It is observed that velocity decreases in the longitudinal direction due to water entrainment in the vicinity of the outlet and rarely changes for increased Richardson number. Similarity collapses of velocity and excess density are obtained, but those of turbulent kinetic energy and dissipation rate are not. A shape factor for the dense interflow is obtained from the simulated profiles. The value of this shape factor can be used in the layer-averaged modeling of dense interflows. In addition, a buoyancy-related parameter ($c_{3{\varepsilon}}$) for the $k-{\varepsilon}$ model and the volume expansion coefficient (${\beta}_0$) are obtained from the simulated results.

On the Volumetric Balanced Variation of Ship Forms (체적 밸런스 선형변환방법에 대한 연구)

  • Kim, Hyun-Cheol
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.2
    • /
    • pp.1-7
    • /
    • 2013
  • This paper aims at contributing to the field of ship design by introducing new systematic variation methods for ship hull forms. Hull form design is generally carried out in two stages. The first is the global variation considering the sectional area curve. Because the geometric properties of a sectional area curve have a decisive effect on the global hydrodynamic properties of ships, the design of a sectional area curve that satisfies various global design conditions, e.g., the displacement, longitudinal center of buoyancy, etc., is important in the initial hull form design stage. The second stage involves the local design of section forms. Section forms affect the local hydrodynamic properties, e.g., the local pressure in the fore- and aftbody. This paper deals with a new method for the systematic variation of sectional area curves. The longitudinal volume distribution of a ship depends on the sectional area curve, which can geometrically be controlled using parametric variation and a variation that uses the modification function. Based on these methods, we suggest a more generalized method in connection with the derivation of the lines for a new design compared to those for similar ships. This is the so-called the volumetric balanced variation (VOB) method for ship forms using a B-spline modification function and an optimization technique. In this paper the global geometric properties of hull forms are totally controlled by the form parameters. We describe the new method and some application examples in detail.

Dynamical Stability Curve of the Ship on Polar Coordinates and Stability Indicator. (동적(動的) 복원정(復原挺) 곡선(曲線)의 작도법(作圖法)과 그 응용(應用)에 관(關)하여)

  • Jin-Ahn,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.2 no.1
    • /
    • pp.15-19
    • /
    • 1965
  • The stability curves are very important data to decide the seaworthiness of all kinds of ships among waves. Both statical and dynamical stability curves on a rectangular coordinate system have broadly been handled at ship yards or at the government concerned, up to data. As concerns a method of obtaining a statical stability curve on polar coordinate system, the papers were presented once. Also, it is of use to research the dynamical stability curve on polar coordinate system. Author treated of the dynamical stability curve by four different methods, and tried to set the stability indicator inboard, adopted those proposals, in order to give some aids for good navigation on the sea. Fig. 1. shows a drawing method in case of the position of centre of buoyancy can be previously pointed out on the line corresponding to its inclination. Fig. 2. shows a method used a statical stability curve on polar coordinate. Fig. 3. shows a method obtained by the most simplified means. Fig. 4. shows dynamical stability curve made by geometrical expression method, instead of dynamical lever. A simple stability indicator which was mechanized above characteristics is attempted by author as shown Fig. 5 and Fig.6. It is demanded at hand, for more advanced improvement of such indicator.

  • PDF

Mechanical Characteristics of Basalt in Jeju Island with Relation to Porosity (공극률에 따른 제주도 현무암의 역학적 특성)

  • Moon, Kyoungtae;Park, Sangyeol;Kim, Youngchan;Yang, Soonbo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.4
    • /
    • pp.1215-1225
    • /
    • 2014
  • Volcanic rocks formed from magma near the earth surface commonly show vesicular structures due to exsolution of gaseous phases in magma. The distinction and the amount of vesicles are greatly various, but there are few researches on the effect of volume percentage of vesicles on the mechanical properties. In this study, mechanical characteristics of volcanic rocks in relation to the porosity are investigated through experimental tests with Jeju basalt. Two methods (the buoyancy method and the caliper method) are adopted for measuring porosity. And unconfined compressive strength, elastic modulus, tensile strength, and elastic wave velocity are plotted against porosity in order to propose the empirical relations after the regression analysis. Also, unconfined compressive strength and the elastic modulus in relation to the elastic wave velocity are proposed with the analysis. In the case of vesicular rocks with more than 5% porosity, it is found that the buoyancy method provides more accurate estimation of porosity than the caliper method. The unconfined compressive strength, the elastic modulus, and the elastic wave velocity decrease curvilinearly with increasing in porosity. Also, the unconfined compressive strength and the elastic modulus increase linearly with increasing in elastic wave velocity.

Simulation of Soil Behavior due to Dam Break Using Moving Particle Simulation (댐 붕괴에 의한 토양 거동 시뮬레이션)

  • Kim, Kyung Sung;Park, Dong-Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.6
    • /
    • pp.388-396
    • /
    • 2017
  • A Lagrangian approach based computational fluid dynamics (CFD) was used to simulate large and/or sharp deformations and fragmentations of interfaces, including free surfaces, through tracing each particle with physical quantities. According to the concept of the particle-based CFD method, it is possible to apply it to both fluid particles and solid particles such as sand, gravel, and rock. However, the presence of more than two different phases in the same domain can make it complicated to calculate the interaction between different phases. In order to solve multiphase problems, particle interaction models for multiphase problems, including surface tension, buoyancy-correction, and interface boundary condition models, were newly adopted into the moving particle semi-implicit (MPS) method. The newly developed MPS method was used to simulate a typical validation problem involving dam breaking. Because the soil and other particles, excluding the water, may have different viscosities, various viscosity coefficients were applied in the simulations for validation. The newly developed and validated MPS method was used to simulate the mobile beds induced by broken dam flows. The effects of the viscosity on soil particles were also investigated.

Comparison of Waterjet Performance for Tracked Vehicle according to the Variation of Impeller Diameter (궤도 차량용 물 분사 추진 장치의 임펠러 직경 변화에 따른 성능 비교)

  • Kim, Hyun-Yul;Kim, Moon-Chan;Chun, Ho-Hwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.5
    • /
    • pp.21-27
    • /
    • 2004
  • A waterjet propulsion system has many advantages compared with a conventional screw propeller especially for amphibious military vehicles because of a good maneuverability at low speed, good operating ability at shallow water, high thrust at low speed to aid maneuverability and exit from water, etc. Especially, compact design is important for the tracked-vehicle because of buoyancy in water and available space inside the tracked vehicle. The experiment is parametrically performed for various impeller diameters for more compact design. The experimental results are analyzed according to the ITTC 1996 standard analysis method as well as the conventional propulsive factor analysis method. The full-scale effective and delivered power of the tracked-vehicle are evaluated according to the variation of impeller diameter. This paper emphasized the effect of impeller diameter on the performance of waterjet system.

GPU-accelerated Lattice Boltzmann Simulation for the Prediction of Oil Slick Movement in Ocean Environment (GPU 가속 기술을 이용한 격자 볼츠만법 기반 원유 확산 과정 시뮬레이션)

  • Ha, Sol;Ku, Namkug;Roh, Myung-Il
    • Korean Journal of Computational Design and Engineering
    • /
    • v.18 no.6
    • /
    • pp.399-406
    • /
    • 2013
  • This paper describes a new simulation technique for advection-diffusion phenomena over the sea surface using the lattice Boltzmann method (LBM), capable of predicting oil dispersion from tankers. The LBM is used to solve the pollutant transport problem within the framework of the ocean environment. The sea space is represented by the lattices, where each lattice has the information on oil transportation. Since dispersed oils (i.e., oil droplets) at sea are transported by convection due to waves, buoyancy, and turbulent diffusion, the conservation of mass and many physical oil transport rules were used in the prediction model. Since the LBM is modeled using the uniform lattices and simple rules, it can be easily accelerated by the parallel mechanism, for example, GPU-accelerated method. The proposed model using the LBM is used to simulate a simple pollution event with the oil pollutants of 10,000 kL. The simulation results indicate that the LBM method accelerated with the GPU is 6 times faster than that without the GPU.