Numerical Simulation for Near Field-Behavior of Wastewater Discharged into Stagnant Ambient in Coastal Region

연안지역의 정체수역에서 방류되는 하$\cdot$폐수의 근역거동 수치모의

  • Kwon, Seok-Jae (Division of Civil, Urban & Geosystem Engineering, Seoul National University) ;
  • Seo, Il-Won (Division of Civil, Urban & Geosystem Engineering, Seoul National University)
  • 권석재 (서울대학교 지구환경시스템공학부) ;
  • 서일원 (서울대학교 지구환경시스템공학부)
  • Published : 2005.09.01

Abstract

This study developed the jet integral model to analyze the behavior of the wastewater discharge in the near field using the fourth order Runge-Kutta method in order to numerically solve the problems of six ordinary differential equations and six unknowns. This jet integral model used the entrainment hypothesis and the manipulation of sonle shape constant. This study also conducted the hydraulic experiments fnr single horizontal buoyant Jet using LIF through the calibration procedure. The results calculated by the previous models, CORMIX 1 and VISJET, and the proposed jet integral model were compared to the hydraulic experimental results. The centerline trajectories predicted by the proposed model were in good agreements with the experimental results in the transition region whereas the trajectories calculated by the VISJET model agreed well with the measured data in the momentum and buoyancy-dominated regions. The centerline dilution calculated by the proposed model agreed generally with the measured dilution in the intial and transition regions while the centerline dilution predicted by the CORMIX 1 was in good agreements with the experimental results in the momentum and buoyancy-dominated regions.

본 연구에서는 정체수역에서 유입이론과 일부 형상계수의 조정을 통해 근역에서의 하$\cdot$폐수 혼합거동을 해석할 수 있는 근역제트적분모형을 개발하기위해 총 6개의 상미분 보존방정식에 6개의 미지수를 가지는 문제를 수치적으로 풀기 위한 4차의 Runge-Kutta기법을 사용하였다. 또한, LIF 시스템을 이용하여 검정과정을 통해서 단일수평부력제트의 수리실험을 수행하였다. 그리고 기존의 모형 CORMIX 1, WSJET,그리고 본 모형의 계산결과를 수리실험결과와 서로 비교하였다. VISJET모형에 의해 예측된 중심선 제적이 운동량과 부력이 지배적인 구간에서는 실험결과와 근접한 반면에 본 제트적분모형에 의해 예측된 결과는 천이영역에서 측정된 궤적과 잘 일치하였다. 중심선희석률에 있어서 운동량과 부력이 지배적인 구간에서 CORMIX1 모형의 결과와 잘 일치하는 반면에 초기영역과 천이 영역에서 본 모형의 결과와 대체로 잘 일치하는 경향을 보였다.

Keywords

References

  1. 강시환, 서일원, 이윤군, 권영택 (2002). 해양방류관의 적정배치를 위한 실용화기술 개발. 연구보고서, 한국해양연구원, 환경부
  2. 서일원, 권석재, 김영도 (2002). 흐름수역에서 수평부력제트의 거동해석. 대한토목학회 논문집, 22(3-B), 271-280
  3. Abraham, G (1963). Jet diffusion in stagnant ambient fluid. Ph.D. Dissertation, Dept. of Civil Engineering, Technological Univ., Delft
  4. Akar, P.J. and Jirka, G.H. (1991). CORMIX2: An expert system for hydrodynamic mixing zone analysis of conventional and toxic submerged multi port diffuser discharges. Technical Report, DeFrees Hydraulics Laboratory, School of Civil and Environmental Engineering, Cornell Univ., ithaca, New York
  5. Anwar, H.O. (1969). Behavior of a buoyant jet in a calm fluid. Proc. ASCE, 95(4), 1289-1300
  6. Cederwall, K. (1968). Hydraulics of marine wastewater disposal. Hydraulic Division Report No. 42, Chalmers Institute of Technology, Goteborg, Sweden
  7. Davidson, M.J. (1989). The behavior of single and multiple, horizontally discharged, buoyant flows in a non-turbulent coflowing ambient fluid. Ph.D. Dissertation, Dept. of Civil Engineering, Univ. of Canterbury, Christchurch, New Zealand
  8. Doneker, R.L. and Jirka, GH. (1990). Expert system for hydrodynamic mixing zone analysis of conventional and toxic submerged single port discharges (CORMIX I). Report EPA/600/3-90/0 12, Environmental Research Laboratory, U.S. Environmental Protection Agency, Athens, Georgia
  9. Fan, L.N. (1967). Turbulent buoyant jets into stratified or flowing ambient fluids. California Institute of Technology Technical Report KH-R-15, W. M. Keck Laboratory of Hydraulics and Water Resources Division of Engineering and Applied Science, Pasadena, California
  10. Fischer, H.B., Imberger, J., List, E.J., Koh, R.C.Y. and Brooks, N.H. (1979). Mixing in Inland and Coastal Water. Academic Press, New York
  11. Hongwei, W. (2000). Investigations of buoyant jet discharges using digital particle veJocimetry (DPIV) and planar laser induced fluorescence (DPIV). Ph.D. Dissertation, School of Civil and Structural Engineering, Nanyang Technological University, Singapore
  12. Holley, E.R. and Jirka, GH. (1986). Mixing in rivers. Technical Report E-86-11, US Army Engineer Waterways Experiment Station, Vicksburg, Miss
  13. Lee, J.H.W. (1989). Note on Ayoub's data of horizontal round buoyant jet in current. J. Hyd. Engineering, ASCE, 115(7), 969-975 https://doi.org/10.1061/(ASCE)0733-9429(1989)115:7(969)
  14. Lee, J.H. and Seo, I.W. (2000). A numerical simulation of an advected thermal using a Gaussian-vortex model. J, Eng. Mechanics, ASCE, 126( 10), 1098-1106 https://doi.org/10.1061/(ASCE)0733-9399(2000)126:10(1098)
  15. Lee, J.H.W. and Cheung, V. (1990). Generalized Lagrangian model for buoyant jets in current. J. Envir. Engineering, ASCE, 116(6), 1085-1106 https://doi.org/10.1061/(ASCE)0733-9372(1990)116:6(1085)
  16. Lee, J.H.W., Cheung, V., Wang, W.P. and Cheung, S.K.B. (2000). Lagrangian modeling and visualization of Rosette outfall plumes. Proc. Hydroinformatics 2000, Iowa, July 23-27 (CDROM)
  17. Miller, D. and Cummings, E.W. (1957). Static pressure distribution in the free turbulence jet. J. Fluid Mechanics, 3, 1-16 https://doi.org/10.1017/S0022112057000440
  18. Morton, B.R., Taylor, G.I. and Turner, .J.S, (1956). Turbulent gravitational convection from maintained and instantaneous sources. Proc., Royal Society, A234, 1-23 https://doi.org/10.1098/rspa.1956.0011
  19. Papanicolaou, P.N. (1984). Mass and momentum transport in a turbulent buoyant vertical axisymmetric Jet. Ph.D. Dissertation, California Institute of Technology, USA
  20. Papanicolaou, P.N. and List, EJ. (1988). Investigations of round vertical turbulent buoyant jets. J. Fluid Mechanics, 195, 341-391 https://doi.org/10.1017/S0022112088002447
  21. Rajaratnam, N. (1976). Turbulent Jets. Elsevier Scientific Publishing Company, Amsterdam
  22. Schatzmann, M. (1979). An integral model of plume rise. Atmos. Envir., 13,721-731 https://doi.org/10.1016/0004-6981(79)90202-6
  23. Schlichting, H. (1979). Boundary Layer Theory. 6th Edition, McGraw-Hill, New York
  24. Seo, I.W., Kwon, S.J. and Yeo, H.K. (2004). Merging characteristics of buoyant discharges from Rosette-type diffusers in shallow water. J. Civil Engineering, KSCE, 8(6), 679-688 https://doi.org/10.1007/BF02823559
  25. White, F.M. (1979). Fluid Mechanics. McGraw-Hill. New York
  26. Wood, I.R., Bell, R.G and Wilkinson, D.L. (1993). Ocean Disposal of Wastewater. World Scientific, Singapore