• Title/Summary/Keyword: buoyancy method

Search Result 201, Processing Time 0.026 seconds

Dynamic Behavior Analysis of Mechanical Bileaflet Heart Valve Prosthesis (기계식 이엽심장밸브의 동적거동 해석)

  • 천길정
    • Journal of Biomedical Engineering Research
    • /
    • v.12 no.3
    • /
    • pp.149-156
    • /
    • 1991
  • In this paper, fluttering behavior of mechanical bileaflet heart valve prosthesis was analyzed taking into consideration of the impact between valve plate and stopper Vibration system of the valve was modeled as a rotating system, and equations are induced by moment equilibrium equations. Lift force, drag force, gravity and buoyancy were considered as external forces acting on the valve plate/ The 4th order Runge-Kutta method was used to solve the equations. Valve plate does not come to the static equilibrium position at a stretch, but come to that position after under damping vibration. Damping ratio increases as the cardiac optput increases, and the mean damping ratio is in the range of 0.16~40.25. Fluttering frequency does not have any specific value, but varies as a function of time. It is in the range of 10~40Hz. Valve opening appears to be affected by the orientation of the of the valve relative to gravitational forces.

  • PDF

Numerical analysis for the optimum design of a triple-glazed airflow window (환기식 3중 집열창의 최적설계를 위한 수치해석 연구)

  • Kim, H.J.;Hwang, K.Y.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.4
    • /
    • pp.484-496
    • /
    • 1997
  • The fluid flow and heat transfer characteristics of conjugate forced and natural convection in the triple-glazed airflow window, where the outer air passes through a space contrived between the interior and exterior window panes, were studied numerically by a finite volume method for the elliptic form of the Navier-Stokes equations. The investigation focused on the influence of window geometry, ventilastion rate and solar energy on the temperature, velocity distribution and thermal performance of the airflow window. The comparison between the triple-glazed airflow window and the enclosed triple-glazed window was also made to evaluate the effect of buoyancy upon which the thermal performance of the window depended.

  • PDF

Computation of Incompressible Flows Using Higher Order Divergence-free Elements (고차의 무발산 요소를 이용한 비압축성 유동계산)

  • Kim, Jin-Whan
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.5
    • /
    • pp.9-14
    • /
    • 2011
  • The divergence-free finite elements introduced in this paper are derived from Hermite functions, which interpolate stream functions. Velocity bases are derived from the curl of the Hermite functions. These velocity basis functions constitute a solenoidal function space, and the gradient of the Hermite functions constitute an irrotational function space. The incompressible Navier-Stokes equation is orthogonally decomposed into its solenoidal and irrotational parts, and the decoupled Navier-Stokes equations are then projected onto their corresponding spaces to form appropriate variational formulations. The degrees of the Hermite functions we introduce in this paper are bi-cubis, quartic, and quintic. To verify the accuracy and convergence of the present method, three well-known benchmark problems are chosen. These are lid-driven cavity flow, flow over a backward facing step, and buoyancy-driven flow within a square enclosure. The numerical results show good agreement with the previously published results in all cases.

Study on the Position Control System of the Float Chamber using Air Control (부양체 수중 위치제어에 관한 연구)

  • Hur, J.G.;Kim, T.H.;Yang, K.U.
    • 유공압시스템학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.75-80
    • /
    • 2010
  • The paper is that study method to reduce bad influence that act to the floating fish cage by effect of environment in sea. Fish cage is controlled buoyancy using air control. According to marine environment, it is descend automatically to set-up depth and rise on the surface of the sea. The paper is the preceding research for a practical application. The fish cage simplified with the spherical float body. Then a control algorithm and a program developed by the experiment. And we did modelling by bond graph technique, and controlled by the practical reference model for PID control.

  • PDF

Optimal Linearization-Based Robust Controller Design for Underwater Glider (수중글라이더의 최적선형화 모델기반 강인제어기 설계)

  • Moon, Ji Hyun;Lee, Ho Jae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.12
    • /
    • pp.2023-2029
    • /
    • 2016
  • This paper addresses a robust controller design technique for a nonlinear underwater glider with disturbances. We consider the buoyancy and pitching moment as control inputs, which generate additional nonlinearity on the plant dynamics. To deal with the nonlinearity, we utilize the optimal linearization technique. The conditions for the optimal linearization and the controller design are formulated in terms of matrix inequalities. The effectiveness of the proposed method is demonstrated through a simulation.

A Study of Heat Transfer and Particle Deposition During Outside Vapor Deposition Process (외부증착(OVD)공정에 관한 열전달과 입자부착에 관한 연구)

  • 송영휘;최만수;강신형
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.1
    • /
    • pp.193-202
    • /
    • 1994
  • A study of heat transfer and particle deposition has been made numerically for outside vapor deposition process. Heat conduction through the two layer cylinder which consists of the target and the deposited layer is included together with heat transfer and gas jet flow onto the cylinder from the torch. Temperature and flow fields have been obtained by an iterative method and thermophoretic particle deposition has been studied. Of particlar interests are effects of the thickness of the deposited layer, the torch speed and the rotation speed of the cylinder on particle deposition flux and efficiency. Effects of buoyancy, variable properties and tube rotation are included.

Numerical Investigation of CuO-Water Nanofluid Flow and Heat Transfer across a Heated Square Cylinder

  • Bouazizi, Lotfi;Turki, Said
    • International Journal of Fluid Machinery and Systems
    • /
    • v.9 no.4
    • /
    • pp.382-393
    • /
    • 2016
  • Flow over a bluff body is an attractive research field in thermal engineering. In the present study, laminar flow over a confined heated square cylinder using CuO-Water nanofluid is considered. Unsteady two-dimensional Navier-Stokes and energy equations are solved numerically using finite volume method (FVM). Recent correlations for the thermal conductivity and viscosity of nanofluids, which are function of nanoparticle volume fraction, temperature and nanoparticle diameter, have been employed. The results of numerical solution are obtained for Richardson number, nanoparticle volume fractions and nanoparticle diameters ranges of 0-1, 1-5% and 30-100 nm respectively for a fixed Reynolds number of Re = 150. At a given volume concentration, the investigations reveal that the decreasing in size of nanoparticles produces an increase in heat transfer rates from the square cylinder and a decrease in amplitude of the lift coefficient. Also, the increment of Nusselt number is more pronounced at higher concentrations and higher Richardson numbers.

An Upending Stability for Offshore Jacket (대형 해양 자켓의 직립 안정성 고찰)

  • Jo, C.H.;Kim, B.H.;Jeong, H.
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.203-207
    • /
    • 2003
  • As the upending is one of the critical steps in the installation of offshore structure, datail procedure of upending operation is studied in the paper. For larger offshore structure installation, launching method is often applied. However after launching, the upending process is to be followed. To ensure successful upending operation, datail process is analysed considering various factors affecting on the operation including reserved buoyancy, free flotation position, seabed clearance, ballast and hook load. To investigate the influence of each factor on the procedure, twelve numerical jacket models with various dimensions are simulated and studied. From the study, it is revealed that the increase of buoyance and decrease of self weight generate a large seabed clearance. The law seabed clearance during flooding creates higher hook load and height. The paper also introduces a guideline for the related structure design and construction with the effects of contribution factors in the upending operation.

  • PDF

Combustion Characteristics of the Miao-Gravity Condition (미소중력장에서의 연소특성 연구)

  • Lee, Keun-Oh;Lee, Kyeong-Ook
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.4
    • /
    • pp.66-70
    • /
    • 2002
  • The transient soot distributions within the region bounded by the droplet surface and the flame were measured using a full-filed light extinction technique and subsequent tomographic inversion using Abel transforms. The soot volume fraction results for n-heptane droplets represent the first quantitative assessment of the degree of sooting for isolated droplets burning under microgravity condition. The absence of buoyancy(which produces longer residence times) and the effects of thermophoresis produce a situation in which a significant concentration of soot is produced and accumulated into a soot-cloud. Results indicate that indeed the soot concentration within the microgravity droplet flames(with maximum soot volume fractions as high as ~60ppm) are significantly higher than corresponding values that are reports for normal-gravity flames. This increase in likely due to longer residence times and thermophoretic effects that manifested under microgravity conditions.

Design of Boat Racing Game using Buoyant Force

  • An, Syoungog;Kang, Jae-Hyun;Kim, Soo Kyung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.9
    • /
    • pp.21-26
    • /
    • 2018
  • A variety of game algorithms have been proposed in recent years. Racing games using these new algorithms have greatly improved compared to those in the past. According to the analysis of racing games done by wheelgamer.com, a website that specializes in racing games, cars are the most common subject in mainstream racing games. These results show there are very few racing games using special subjects such as boats. This paper proposes a method to develop a realistic boat racing game using the Buoyont Force, beyond the limitation of typical racing games that are restricted to cars. A Material Editor based on Unreal Engine 4.12 is used to manifest the Dynamic Material of realistic ocean water. Blueprint, a visual scripting function, is used to materialize buoyancy which allows the boat to move freely along the waves.