
Journal of The Korea Society of Computer and Information

Vol. 23 No. 9, pp. 21-26, September 2018

www.ksci.re.kr

https://doi.org/10.9708/jksci.2018.23.09.021

Design of Boat Racing Game using Buoyant Force

1)Syoungog An*, Jae-Hyun Kang*, Soo Kyung Kim*

Abstract

A variety of game algorithms have been proposed in recent years. Racing games using these new

algorithms have greatly improved compared to those in the past. According to the analysis of racing

games done by wheelgamer.com, a website that specializes in racing games, cars are the most

common subject in mainstream racing games. These results show there are very few racing games

using special subjects such as boats. This paper proposes a method to develop a realistic boat racing

game using the Buoyont Force, beyond the limitation of typical racing games that are restricted to

cars. A Material Editor based on Unreal Engine 4.12 is used to manifest the Dynamic Material of

realistic ocean water. Blueprint, a visual scripting function, is used to materialize buoyancy which

allows the boat to move freely along the waves.

▸Keyword: Buoyant Force, Dynamic, Blueprint, Racing Game, Game Engine

I. Introduction

Gran Track 10 is known to be the first racing game,

launched in 1974 as an Atari model. In the 1980s and 90s,

there was not enough hardware to express the speed of

racing. Racing games could only be played in arcades.

Breakthroughs in game algorithms and hardware allowed

racing games to make a huge leap forward. The graphics

became more realistic of course, but so did the handling.

The invention of the specialized controller allowed for the

player to feel like he/she was actually driving. Also, the

ability to select and tune the vehicles is a characteristic

exclusive to racing games. According to the statistics of

the racing game website wheelgamer.com1, 86.3% of

racing games use cars as the main subject whereas only

1% use special subjects such as boats.

The game proposed in this study is a boat racing game

that goes beyond the limitations of typical racing games.

The contrast of the ocean water graphics is adjusted

using the Material Editor3-5 of the Unreal Engine2.

Dynamic Material is used to manifest realistic wave

motions. Buoyancy is materialized using a visual scripting

function called Blue Print6 , allowing the boat to float in

response to the wave motion. The boat’s steering

algorithm is applied here, allowing the player to move the

boat in the desired direction and speed. Simple interface

operation is implemented by using Adobe PhotoShop CS5

and an Unreal UI editing tool called UMG. Also, various

boat characters are modeled with 3Ds Max, adding to the

game’s appeal.

∙First Author: Syoungog An, Corresponding Author: Soo Kyun Kim

*Syoungog An (sungohk@pcu.ac.kr), Dept. of Game Engineering, Pai Chai University

*Jae-Hyun Kang (minlog@empal.com), Dept. of Game Engineering, Pai Chai University

*Soo Kyun Kim (kimsk@korea.ac.kr), Dept. of Game Engineering, Pai Chai University

∙Received: 2018. 09. 11, Revised: 2018. 09. 15, Accepted: 2018. 09. 17.

∙This work was supported by the research grant of Pai Chai University in 2018.

22 Journal of The Korea Society of Computer and Information

II. Design of Game Structure

Fig. 1. Flow chart of main menu

The game proposed in this paper is a first person boat

racing game. In order to win, the player must race three

laps around the track and arrive at the finish line before

all seven AI boats. The game UI is designed to adjust the

direction of the boat using the arrow keys on the

keyboard, the drift function using the shift key, and the

speed booster function using the control key.

Fig. 1 is a flowchart of the main menu. The starting

screen of the proposed game is the main menu screen.

When the Single Player button is selected, the UI screen

for selecting the boat and the map is displayed. After the

selection process a loading screen is displayed, then

switched to the game scene. The player will now wait for

a three second countdown before starting the race.

Fig. 2. Flow chart of game scene

Fig. 2 shows the flow chart of the game scene. The

player races with seven AI boats. The boat’s movement is

determined by the player’s input key. Buoyancy and

ocean water graphics are updated in live time by

detecting any collisions on the boat. One lap is counted

every time the boat passes through the finish line, and

when the count reaches three laps the game is over.

Fig. 3. Flow chart of game over

Fig. 3 shows the flow chart until the game is over. At

the end of the game, the results ranking window will be

displayed briefly before returning to the main screen. If

the player reached the finish line first before all other

AIs, the player’s name and the race record will be stored

in the champion rankings and can be retrieved from the

main screen at any time.

III. Buoyancy Calculations and Boat Design

1. Graphic Representation of Ocean Water

The ocean water graphics used in this game is based

on the ‘Ocean Water Shader’[7], which is shared in the

Unreal Community Project, and is materialized using the

Material Editor. First, the parameters for the Base Color

of the ocean water are set as Dark Color and Light Color.

Then these values are manipulated in order to express

diversely colorful ocean water that differs from scene to

scene. Also, the color and depth of the wave foams is

adjusted to make the movement of the boat upon on the

ocean water look more natural. Lastly, Translucent

Material is used to control the transparency of the ocean

water and make it look clearer when the player is near

Design of Boat Racing Game using Buoyant Force 23

the shore and underwater Fig. 4 shows the results of the

Ocean Water.

Fig. 4. Ocean graphic of main menu scene

2. Representation of Buoyancy

As shown in Fig. 5, buoyancy8 is caused by opposing

pressures within fluid. The total sum of the horizontal

forces is zero, but the total sum of the vertical forces

equals the force against the bottom of the boat minus the

force against the top of the boat. The force (f) equals the

pressure (P) multiplied by the area (A). (: Density)

Force

 ft=ptAt=pghts
2

 fb=pbAb=pghbs
2

Differential

 Fb–ft=pghbs
2-pghts

2

 = pg(hb-ght)s
2

= -pgs3

= -pgV (V: Volume)

Fig. 5. Enemy Character

The specific gravity an object and the magnitude of

buoyancy interact with each other based on Archimedes’

law8-9. An object with lower specific gravity is

influenced more by buoyancy rather than weight. When

the volume of the object submerged is the same,

buoyancy is greater if the specific gravity of the fluid is

greater.

1. Density

> 1 … sink

< 1 … float

2. Force Analysis

→ weight vs. buoyant force

 weight > buoyant force = sink

 weight < buoyant force = float

Fig. 6. Two ways of floating in water

The buoyancy formula is used to create a blueprint of

the boat’s interface. Fig. 6 shows the results of this

blueprint. First, a virtual cuboid called the box collision is

created at the bottom of the boat’s static mesh. The

bottom of the box collision becomes the actual surface

area that floats in the ocean. Then, virtual physics objects

called the buoyancy force are installed to check the

position and angle on the map that changes in accordance

to the surface area and movement of the box collision. As

a result, the blueprint variables (height of the wave,

velocity, water volume, etc.) that manage the dynamic

material in the ocean water are updated in real time. Also,

the algorithm shown in Fig. 6 is processed as a Construct

Script in order to execute it into the most basic script of

the boat within the game.

3. Materialization of Boat Movement

Axis Mapping list is set up in the project settings in

order to bind the player’s input key and the boat’s

movement. Set the Up, Down, Left, Right keys of the

keyboard to MoveForward, MoveRight. The values of the

scale should be set as +1.0 for the up, right key and -1.0

for the down, left key.

Then retrieve the preset MoveForward, MoveRight list

from the boat’s blueprint and set the Custom Event to Run

on Server so that it only moves when the player is

holding down the keys, and check Reliable. An arrow

component called the steer force location is installed in

the front bottom surface of the boat facing forward in

order to command the direction of the boat. This serves

as the steering wheel for the boat, and the direction is

determined by keyboard input.

The initial values of the float variables forward speed

and steering speed should be set as 1500.0 and 200.0,

respectively. The change in direction is determined by

multiplying the key input scale values of 1 and -1 to

these variables. Float variables called the drift value and

boost value are created in order to create drift and

booster skills, with an initial value of 1.0. Each time the

shift and ctrl keys are pressed this value is increased to

2.0 for three seconds to materialize a skill event that

speeds up the redirection and forwards speeds. Fig. 7

below shows the pseudo codes for the boat’s movement

loop.

24 Journal of The Korea Society of Computer and Information

1. Axis Mappings:

 MoveForward (Keyboard ↑, ↓ / scale 1.0, -1.0)

 MoveRight (Keyboard →, ← / scale 1.0, -1.0)

 Arrow Component: Steer Force Location

 Float Variables:

 Steering Speed (200.0), Forward Speed (1500.0)

 Right Axis Value (0.0), Forward Axis Value (0.0)

 Drift Value (1.0), Boost Value(1.0)

2. for t ← to ∞ do

t ← delta seconds

Event 1:

Add Force at Location ← Target = boat static mesh

← Location = Steer Force Location of Value of World Location

← Force = Steer Force Location of Value of World Rotation

Right Vector * (Mass of Boat * Steering Speed

* Right Axis Value * Drift Value)

Event 2:

Add Force ← Target = boat static mesh

← Force = Forward Vector of Boat * (Mass of

Boat * Forward Speed * Forward Axis Value *

Drift Value)

3. if MoveRight then Right Axis Value = 1.0 or –1.0

then Add Force at Location

Execution of Event

4. if MoveForward then Forward Axis Value = 1.0 or -1.0

then Add Force

Execution of Event

5. if Wave Value of Ocean material ← 300 to 700

then Z Value of Steer Force Location ← 150 to 200

Fig. 7. Pseudo code for applying movement forward/right forces

IV. Design of User Interface

1. Main Menu Screen

The first screen of the proposed game is the main menu

screen, which consists of Single Player, Champion Ranking,

Help & Options, and Exit game, as shown in Fig. 8.

Fig. 8. Main menu scene

Fig. 9. Flow chart of main menu

Fig. 9 shows a flowchart of the contents in each

selection of the main menu.

2. Creation of Various Menus

After pressing the Single Player button, the game is

started immediately after selecting the boat and map. Fig.

10 shows the boat selection menu.

Fig. 10. Selection of boat menu

Fig. 11. Selection of map menu

Fig. 11 shows the map selection menu, where the

player can select the racing track.

The Champion Ranking menu allows the player to

check the names and race records of all previous players

who came in first place. The Help & Options menu shows

the How to Play, Controls, and Settings buttons. These

options can teach the player how to play the game and

Design of Boat Racing Game using Buoyant Force 25

how to operate the keyboard, and also allows the setting

for graphics, BGM, and SFX.

V. Development Environment

The proposed game in this study is a first person boat racing

game developed with Unreal Engine 4.12 and operated in

Windows platform. Two maps called the Atlantis and Brown

City were designed for the boat race. The UI is updated in

real time while the game is operated. The time and the number

of laps around the track are shown in the upper left corner

of the screen. Real-time race ranking is displayed in the upper

right Position of the screen. The player is able to see his/her

current position by using the mini map on the bottom of the

screen. The speedometer and drift gauge can be used to check

the speed of the boat and whether or not the booster is being

used. Fig. 12 shows a game scene from the Atlantis map.

Fig. 12. Game scene of atlantis map

Fig. 13. Game scene of brown city map

Fig. 13 shows a game scene from the Brown City map.

VI. Conclusions

The game proposed in this study is a racing simulation

game that overcomes the limitation of typical racing

games and uses boats rather than cars. Some strong

points include the ability to control the contrast of the

ocean water graphics using Material Editor of the Unreal

Engine, and to express realistic wave motion by

implementing dynamic material. A distinct feature of the

game is the Blue Print, a visual scripting function, which

is used to materialize buoyancy in order to allow the boat

to float in response to wave motion. Also, the steering

algorithm of the boat allows the player to move the boat

in the desired direction and speed.

REFERENCES

[1] Wheelgamer, Article(CrossRef Link)

[2] Unreal Engine, Article(CrossRef Link)

[3] Aram Cookson, “Unreal Engine 4 GameDevelopment in

24 Hours, Sams Teach Yourself”, Sams Publishing; 1

edition, June 18, (2016)

[4] Tom Shannon, “Unreal Engine 4 for Design Visualization:

Developing Stunning Interactive Visualizations,

Animations, and Renderings”, Addison – Wesley

Professional; 1edition, August 2017

[5] Joanna Lee, “Learning Unreal Engine Game Development”,

Packt Publishing – ebooks Account, February 2016

[6] Brenden Sewell , “Blueprints Visual Scripting for Unreal

Engine”, Packt Publishing – ebooks Account, July 2015

[7] David Nixon , “Unreal Engine 4 for Beginners”, Luquinox,

February 2017

[8] Khan Academy, Article(CrossRef Link)

[9] WIKIPEDIA- Buoyancy, Article(CrossRef Link)

[10] WIKIPEDIA- Archimedes, Article(CrossRef Link)

[11] The Story Of Mathmeatics, Article(CrossRef Link)

26 Journal of The Korea Society of Computer and Information

Authors

Syungog An received the Ph.D. degrees in

Computer Science and Engineering from

Korea University, Korea, in 1989. She is

currently a Professor in the Department of

Game Engineering, Paichai University.

Jae-Hyun Kang received the B.S. degrees in

GameEngineering from Paichai University,

Korea,

Soo Kyun Kim received Ph.D. in Computer

Science & Engineering Department of

Korea University, Seoul, Korea, in 2006. He

joined Telecommunication R&D center at

Samsung Electronics Co., Ltd., from 2006

and 2008. He is now a professor at

Department of Game Engineering at Paichai University,

Korea. His research interests include multimedia, pattern

recognition, image processing, mobile graphics, geometric

modeling, and interactive computer graphics. He is a

member of ACM, IEEE, IEEE CS, KACE, KMMS, KKITS and

KIIT.

