• Title/Summary/Keyword: bulk fill

Search Result 84, Processing Time 0.035 seconds

Nonlocal-integro-vibro analysis of vertically aligned monolayered nonuniform FGM nanorods

  • Yuan, Yuan;Zhao, Ke;Zhao, Yafei;Kiani, Keivan
    • Steel and Composite Structures
    • /
    • v.37 no.5
    • /
    • pp.551-569
    • /
    • 2020
  • Vibration of vertically aligned-monolayered-nonuniform nanorods consist of functionally graded materials with elastic supports has not been investigated yet. To fill this gap, the problem is examined using the elasticity theories of Eringen and Gurtin-Murdoch. The geometrical and mechanical properties of the surface layer and the bulk are allowed to vary arbitrarily across the length. The nonlocal-surface energy-based governing equations are established using differential-type and integro-type formulations, and solved by employing the Galerkin method by exploiting admissible modes approach and element-free Galerkin (EFG). Through various comparison studies, the effectiveness of the EFG in capturing both nonlocal-differential/integro-based frequencies is proved. A constructive parametric study is also conducted, and the roles of nanorods' diameter, length, stiffness of both inter-rod's elastic layer and elastic supports, power-law index of both constituent materials and geometry, nonlocal and surface effects on the dominant frequencies are revealed.

Electrical and optical characterizations of OSCs based on polymer/fullerene BHJ structures with LiF inter-layer (Polymer/fullerene/LiF inter-layer BHJ 유기태양전지의 광학 및 전기적 특성에 대한 연구)

  • Song, Yoon-Seog;Kim, Seung-Ju;Ryu, S.O.
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.1
    • /
    • pp.27-32
    • /
    • 2011
  • In this study, we have investigated the power conversion efficiency of organic solar cells utilizing conjugated polymer/fullerene bulk-hetero junction(BHJ) device structures. We have fabricated poly(3-hexylthiophene)(P3HT), poly[2methoxy-5-(3',7'-dimethyloctyl-oxy)-1-4-phenylenevinylene] as an electron donor, [6,6]-phenyl $C_{61}$ butyric acid methylester(PCBM-$C_{61}$)as an electron acceptor, and poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate)(PEDOT:PSS) used as a hole injection layer(HIL), after fabricated active layer, between active layer and metal cathode(Al) deposited LiF interlayer(5 nm). The properties of fabricated organic solar cell(OSC) devices have been analyzed as a function of different thickness. The electrical characteristics of the fabricated devices were investigated by means J-V, fill factor(FF) and power conversion efficiency(PCE). We observed the highest PCEs of 0.628%(MDMO-PPV:PCBM-$C_{61}$) and 2.3%(P3HT:PCBM-$C_{61}$) with LiF inter-layer at the highest thick active layer, which is 1.3times better than the device without LiF inter-layer.

Photovoltaic Effect of Polymer Solar Cells Doped with Sensitizing Dye (감광성 염료를 도핑한 고분자 태양 전지 소자 연구)

  • Yun, Soo Hong;Park, Jae Woo;Huh, Yoon Ho;Park, Byoungchoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.3
    • /
    • pp.252-256
    • /
    • 2013
  • We introduced sensitizing dyes into the bulk-heterojunction (BHJ) photovoltaic (PV) layer of polymer solar cells (PSCs). The sensitizing dyes doped were Bis(tetra butyl ammonium) cis-dithio cyanato bis(2,2'-bipyridine-4-carboxylicacid-4'-carboxylate) ruthenium (II) (N719 dye) and the BHJ PV layer used was made of poly (3-hexylthiophene) (P3HT) and phenyl $C_{61}$-butyric acid methyl ester (PCBM). It was found that the N719 dyes increase the photovoltaic performance, i.e., increasing open-circuit voltage and short-circuit current density with improved fill factor. For the P3HT:PCBM PV cells doped with the N719 dyes (0.24 wt%), an increase in power conversion efficiency of 4.0% was achieved, compared to that of the control cells (3.6%) without the N719 dyes.

The performance dependency of the organic based solar cells on the variation in InZnSnO thickness

  • Choi, Kwang-Hyuk;Jeong, Jin-A;Park, Yong-Seok;Park, Ho-Kyun;Kim, Han-Ki
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.268-268
    • /
    • 2010
  • The performance dependence of the P3HT:PCBM based bulk hetero-junction (BHJ) organic solar cells (OSCs) on the electrical and the optical properties of amorphous InZnSnO (a-IZTO) electrodes as a difference in film thicknesses are examined. With an increasing of the a-IZTO thickness, the series resistance ($R_{series}$) of the OSCs is reduced because of the reduction of sheet resistance ($R_{sheet}$) of a-IZTO electrodes. Additionally, It was found that the photocurrent density ($J_{sc}$) and the fill factor (FF) in OSCs are mainly affected by the electrical conductivity of the a-IZTO anode films rather than the optical transparency at thinner a-IZTO films. On the other hand, despite the much lower $R_{series}$ comes from thicker anode films, the dominant factor affecting the $J_{sc}$ became average optical transmittance of a-IZTO electrodes as well as power conversion efficiency (PCE) in same device configuration due to the thick anode films had as sufficiently low $R_{sheet}$ to extract the hole carrier from the active material.

  • PDF

A Study about the Efficiency of Organic Photovoltaic Device as a function of the Material Concentration (박막의 조성비율에 따른 유기태양전지의 효율성 연구)

  • Kim, Seung-Ju;Lee, Dong-Keun;Park, Jae-Hyung;Gong, Su-Cheol;Kim, Won-Ki;Ryu, Sang-Ouk
    • Journal of the Semiconductor & Display Technology
    • /
    • v.8 no.3
    • /
    • pp.1-5
    • /
    • 2009
  • In this study, we have shown the power conversion efficiency of organic thin film photovoltaic devices utilizing a conjugated polymer/fullerene bulk-hetero junction structure. We use MDMO-PPV(Poly[2-methoxy-5-(3,7-dimethyloctyloxy -1,4-phenylenevinylene) as an electron donor, PCBM([6,6]-Phenyl C61 butyric acid methyl ester) as an electron accepter, and PEDOT:PSS used as a HTL(Hole Transport Layer). We have fabricated OPV(Organic Photovoltaic) devices as a function of the MDMO-PPV/PCBM concentration from 1:1 to 1:5. The electrical characteristics of the fabricated devices were investigated by means of I-V, P-V, F·F(Fill Factor) and PCE(power conversion efficiency). The power conversion efficiency was gradually increased until 1:4 ratio, also the highest efficiency of 0.4996% was obtained at the ratio.

  • PDF

Effects of Bulk Density, Volumetric Water and Gravel Contents on Hardness in Prepared Sandy Loam (충전(充塡) 사양토(砂壤土)에서 용적밀도(容積密度), 용적수분(容積水分) 및 자갈함량(含量)이 경도(硬度)에 미치는 영향(影響))

  • Cho, Jae-Hyun;Kim, Kwang-Rai
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.30 no.1
    • /
    • pp.46-50
    • /
    • 1997
  • This study was conducted to find out the main soil physical properties to control the soil hardness in tamped condition. Sandy loam soil was taken and fill it up to wood cubes and then differently trampling experimental cubic lots which were mulched with various materials, such as, leaves, wood plates and bricks. Soil physical properties were measured 2" core and samples were taken at 250 sites with soil hardness. There were highly significant positive correlations between soil hardness and bulk density, and between bulk density and water content. Negative correlations were found between soil hardness and water content, and between soil hardness and gravel content. The correlation coefficients were increased by multiple correlation between soil hardness, bulk density, volumetric water and gravel content. Bulk density was the main factor to control the hardness, and volumetric water and gravel contents were less effected to soil hardness.

  • PDF

Fabrication and Characterization of Organic Solar Cells with Gold Nanoparticles in PEDOT:PSS Hole Transport Layer (PEDOT:PSS 정공 수송층에 금 나노입자를 첨가한 유기태양전지의 제작 및 특성 연구)

  • Kim, Seung Ho;Choi, Jae Young;Chang, Ho Jung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.20 no.2
    • /
    • pp.39-46
    • /
    • 2013
  • In this paper, organic solar cells(OSCs) based on bulk-heterojunction structures were fabricated by spin coating method using polymer P3HT and fullerene PCBM as a photoactive layer. The fabricated OSCs had a simple glass/ITO/PEDOT:PSS/P3HT:PCBM/Al structures. The photoactive layer of mixed P3HT:PCBM was formed with 1:1 weight ratio. The hole transport layer(HTL) was used conducting polymer PEDOT:PSS concentration with gold nanoparticles. The annealing temperature and concentration of nanoparticles in HTL were verified to improve the OSC characterization. The percentage of gold nanoparticles in HTL were 0.5 wt% and 1.0 wt%, and the surface morphology, electrical properties and absorption intensities were investigated. The devices were 0.5 wt%, and the highest 3.1% of the powder conversion efficiency(PCE), 10.2 $mA/cm^2$ of the maximum short circuit current density($J_{SC}$), 0.535V of the open circuit voltage($V_{OC}$) and 55.8% of the fill factor(F.F) could be obtained when the nanoparticle concertration was 0.5 wt%. The annealing temperature of HTL was $110^{\circ}C$, $130^{\circ}C$, $150^{\circ}C$ in vacuum oven and measured the absorption intensities, surface morphology, crystallinity and electrical properties were investigated. The best property was obtained in HTL annealed at $130^{\circ}C$ for gold nanoparticles of 0.5 wt%, showing that $J_{SC}$, $V_{OC}$, F.F and PCE were about 12.0 $mA/cm^2$, 0.525V, 64.2% and 4.0%, respectively.

The Post Annealing Effect of Organic Thin Film Solar Cells with P3HT:PCBM Active Layer (P3HT:PCBM 활성층을 갖는 유기 박막태양전지의 후속 열처리 효과)

  • Jang, Seong-Kyu;Gong, Su-Cheol;Chang, Ho-Jung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.2
    • /
    • pp.63-67
    • /
    • 2010
  • The organic solar cells with Glass/ITO/PEDOT:PSS/P3HT:PCBM/Al structure were fabricated using regioregular poly (3-hexylthiophene) (P3HT) polymer:(6,6)- phenyl $C_{61}$-butyric acid methyl ester (PCBM) fullerene polymer as the bulk hetero-junction layer. The P3HT and PCBM as the electron donor and acceptor materials were spin casted on the indium tin oxide (ITO) coated glass substrates. The optimum mixing concentration ratio of photovoltaic layer was found to be P3HT:PCBM = 4:4 in wt%, indicating that the short circuit current density ($J_{SC}$), open circuit voltage ($V_{OC}$), fill factor (FF) and power conversion efficiency (PCE) values were about 4.7 $mA/cm^2$, 0.48 V, 43.1% and 0.97%, respectively. To investigate the effects of the post annealing treatment, as prepared organic solar cells were post annealed at the treatment time range from 5min to 20min at $150^{\circ}C$. $J_{SC}$ and $V_{OC}$ increased with increasing the post annealing time from 5min to 15min, which may be originated from the improvement of the light absorption coefficient of P3HT and improved ohmic contact between photo voltaic layer and Al electrode. The maximum $J_{SC},\;V_{OC}$, FF and PCE values of organic solar cell, which was post annealed for 15min at $150^{\circ}C$, were found to be about 7.8 $mA/cm^2$, 0.55 V, 47% and 2.0%, respectively.

Diffusivities of Co-60 through the Clay with varying bulk density. (점토층의 밀도 변화에 따른 Co-60의 확산속도)

  • Suk, Tae-Won;Kim, Hong-Tae;Mho, Se-Young
    • Journal of Radiation Protection and Research
    • /
    • v.20 no.4
    • /
    • pp.265-274
    • /
    • 1995
  • Diffusivity of ions of radioactive species is an important factor for designing radwaste repositories. Clay minerals are used as a backfill material. In this study, diffusion of Co-60 ions through the bentonite having various densities has been studied, using a diffusion cell. The measured diffusivities of Co-60 ions decreased as the density of bentonite increased. The diffusivity of Co-60 ion decreased from $8.79{\times}10^{11}m^2/s$ to $6.82{\times}10-13m^2/s$ as the clay dry bulk density increased from 0.41 to 2.03g/cm3. The diffusivity of Co ion was larger than that of Sr ion at low density, but the diffusivity of Co ion decreased rapidly as the density of clay increased and became smaller than that of Cs ion at high density. This phenomenon is thought to be caused by the rapid decrease of the fraction of mobile cation since the chemical combination of Co ions with oxygen or oxide on clay surface and the entrance of Co ions into the crystal structure of clay increase as the clay density increases. This change should be considered especially in designing the clay back fill for low and intermediate radwaste disposal facilities.

  • PDF

Conventional and Inverted Photovoltaic Cells Fabricated Using New Conjugated Polymer Comprising Fluorinated Benzotriazole and Benzodithiophene Derivative

  • Kim, Ji-Hoon;Song, Chang Eun;Kang, In-Nam;Shin, Won Suk;Zhang, Zhi-Guo;Li, Yongfang;Hwang, Do-Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.5
    • /
    • pp.1356-1364
    • /
    • 2014
  • A new conjugated copolymer, poly{4,8-bis(triisopropylsilylethynyl)benzo[1,2-b:4,5-b']dithiophene-alt-4,7- bis(5-thiophen-2-yl)-5,6-difluoro-2-(heptadecan-9-yl)-2H-benzo[d][1,2,3]triazole} (PTIPSBDT-DFDTBTz), is synthesized by Stille coupling polycondensation. The synthesized polymer has a band gap energy of 1.9 eV, and it absorbs light in the range 300-610 nm. The hole mobility of a solution-processed organic thin-film transistor fabricated using PTIPSBDT-DFDTBTz is $3.8{\times}10^{-3}cm^2V^{-1}s^{-1}$. Bulk heterojunction photovoltaic cells are fabricated, with a conventional device structure of ITO/PEDOT:PSS/polymer:$PC_{71}BM$/Ca/Al ($PC_{71}BM$ = [6,6]-phenyl-$C_{71}$-butyric acid methyl ester); the device shows a power conversion efficiency (PCE) of 2.86% with an open-circuit voltage ($V_{oc}$) of 0.85 V, a short-circuit current density ($J_{sc}$) of 7.60 mA $cm^{-2}$, and a fill factor (FF) of 0.44. Inverted photovoltaic cells with the structure ITO/ethoxylated polyethlyenimine/ polymer:$PC_{71}BM/MoO_3$/Ag are also fabricated; the device exhibits a maximum PCE of 2.92%, with a $V_{oc}$ of 0.89 V, a $J_{sc}$ of 6.81 mA $cm^{-2}$, and an FF of 0.48.