Browse > Article
http://dx.doi.org/10.6117/kmeps.2013.20.2.039

Fabrication and Characterization of Organic Solar Cells with Gold Nanoparticles in PEDOT:PSS Hole Transport Layer  

Kim, Seung Ho (Department of Electronic Engineering, Dankook University)
Choi, Jae Young (Department of Electronic Engineering, Dankook University)
Chang, Ho Jung (Department of Electronic Engineering, Dankook University)
Publication Information
Journal of the Microelectronics and Packaging Society / v.20, no.2, 2013 , pp. 39-46 More about this Journal
Abstract
In this paper, organic solar cells(OSCs) based on bulk-heterojunction structures were fabricated by spin coating method using polymer P3HT and fullerene PCBM as a photoactive layer. The fabricated OSCs had a simple glass/ITO/PEDOT:PSS/P3HT:PCBM/Al structures. The photoactive layer of mixed P3HT:PCBM was formed with 1:1 weight ratio. The hole transport layer(HTL) was used conducting polymer PEDOT:PSS concentration with gold nanoparticles. The annealing temperature and concentration of nanoparticles in HTL were verified to improve the OSC characterization. The percentage of gold nanoparticles in HTL were 0.5 wt% and 1.0 wt%, and the surface morphology, electrical properties and absorption intensities were investigated. The devices were 0.5 wt%, and the highest 3.1% of the powder conversion efficiency(PCE), 10.2 $mA/cm^2$ of the maximum short circuit current density($J_{SC}$), 0.535V of the open circuit voltage($V_{OC}$) and 55.8% of the fill factor(F.F) could be obtained when the nanoparticle concertration was 0.5 wt%. The annealing temperature of HTL was $110^{\circ}C$, $130^{\circ}C$, $150^{\circ}C$ in vacuum oven and measured the absorption intensities, surface morphology, crystallinity and electrical properties were investigated. The best property was obtained in HTL annealed at $130^{\circ}C$ for gold nanoparticles of 0.5 wt%, showing that $J_{SC}$, $V_{OC}$, F.F and PCE were about 12.0 $mA/cm^2$, 0.525V, 64.2% and 4.0%, respectively.
Keywords
organic solar cell; Au nanoparticle; PEDOT:PSS; hole transport layer; power conversion efficiency;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C. J. Brabec, N. S. Sariciftci and J. C. Hummelen, "Plastic Solar Cells", Adv. Funct. Mater., 11(1), 15 (2001).   DOI
2 J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T.-Q. Nguyen, M. Dante and A. J. Heeger, "Efficient Tandem Polymer Solar Cells Fabricated by All-Solution Processing", Science, 317, 222 (2007).   DOI   ScienceOn
3 G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery and Y. Yang, "High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends", Nat. Mater., 4, 864 (2005).   DOI   ScienceOn
4 A. O. Sevim and S. Mutlu, "Post-fabrication electric field and thermal treatment of polymer light emitting diodes and their PV properties", Org. Electron., 10, 18 (2009).   DOI   ScienceOn
5 S. S. Sun and N. S. Saricftci, Organic Photovoltaics: Mechanisms, Materials, and Devices, Talyor Francis, Now York (2005).
6 D. M. Chapin, C. S. Fuller and G. L. Pearson, "A New Silicon p-n Junction Photocell for Converting Solar Radiation into Electrical Power", J. Appl. Phys., 25, 676 (1954).   DOI
7 J. Yi, Properties and Applications of Thin Films Amorphous and micro-crystalline(poly) Silicon, Ph.D. Dissertation, SUNY at Buffalo, NY (1994).
8 C. W. Tang and C.W., "Two-layer Organic Photovoltaic Cell", Appl. Phys. Lett., 48(2), 183 (1986).   DOI   ScienceOn
9 N. S. Sariciftci, L. Smilowitz, A. J. Heeger and F. Wudl, "Photoinduced Electron Transfer form a Conducting Polymer to Buckminsterfullerene", Science, 258, 1474 (1992).   DOI   ScienceOn
10 M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry, E. Muller, P. Liska, N.Vlachopoulos and M. Gratzel, "Conversion of Light to Electricity by cis-X2bis(2,2'-bipyridyl-4,4'- dicarboxylate)ruthenium(II) Charge-Transfer Sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on Nanocrystalline $TiO_{2}$ Electrodes", J. Am. Chem. Soc., 115, 6382 (1993).   DOI   ScienceOn
11 D. Chirvase, J. Parisi, J.C. Hummelen and V. Dyakonov, "Influence of Nanomorphology on the Photovoltaic Action of Polymer-fullerence Composites", Nanotechnology, 15, 1317 (2004).   DOI   ScienceOn
12 W. Ma, C. Yang, X. Gong, K. Lee and A. J. Heeger, "Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology", Adv. Funct. Mater., 15, 1617 (2005).   DOI   ScienceOn
13 T. W. Holcombe, C. H. Woo, D. F. J. Kavulak, B. C. Thompson and J. M. J. Frechet, "All-Polymer Photovoltaic Devices of Poly(3-(4-n-octyl)-phenylthiophene) from Grignard Materials (GRIM) Polymeriztion", J. Am. Chem. Soc., 131, 14160 (2009).   DOI   ScienceOn
14 J. J. M. Hall, C. A. Walsh, N. C. Greenham, E. A. Marseglia, R. H. Friend, S. C. Moratti and A. B. Holmes, "Efficient Photodiodes from Interpenetrating Polymer Networks", Nature, 376, 498 (1995).   DOI   ScienceOn
15 W. S. Shin and S. H. Jin, "Recent Development of Polymer Solar Cells", Poly. Sci. Tech., 17(4), 416 (2006). (in Korean)
16 Y. T. Cheng, J. J. Ho, C. K. Wang, W. Lee, C. C. Lu, B. S. Yau, J. L. Nain, S. H. Chang, C. C. Chang and K. L. Wang, "Improvement of Organic Solar Cells by Flexible Substrate and ITO Surface Treatments", Appl. Surf. Sci., 256, 7606 (2010).   DOI   ScienceOn
17 J. Xue, S. Uchida, B. P. Rand and S. R. Forrest, "4.2% Efficient Organic Photovoltaic Cells with Low Series Resistances", Appl. Phys. Lett., 84(16), 3013 (2004).   DOI   ScienceOn
18 S. K. Jang, S. C. Gong and H. J. Chang, "The Post Annealing Effect of Organic Thin Film Solar Cells with P3HT:PCBM Active Layer", J. Microelectron. Packag. Soc., 17(2), 63 (2010).
19 J. Y. Cho and H. J. Chang, "Properties of Organic Light Emitting Diode with ITO/MEH-PPV/Al Structure on Heating Temperature", J. Microelectron. Packag. Soc., 10(4), 35 (2003).
20 S. W. Tong, C. F. Zhang, C. Y. Jiang, G. Liu, Q. D. Ling, E. T. Kang, D. S. H. Chan and C. Zhu, "Improvement in the Hole Collection of Polymer Solar Cells by Utilizing Gold Nanoparticle Buffer Layer", Chem. Phys. Lett., 453, 73 (2008).   DOI   ScienceOn
21 B. Mazhari, "An Improved Solar Cell Circuit Model for Organic Solar Cells", Sol. Energy Mater. Sol. Cells, 90, 1021 (2006).   DOI   ScienceOn
22 S. Shahin, P. Gangopadhyay and R.A. Norwood, "Ultrathin Organic Bulk Heterojunction Solar Cells: Plasmon Enhanced Performance Using Au Nanoparticles", Appl. Phys. Lett., 101, 053109 (2012).   DOI   ScienceOn
23 Y. Kim, S. A. Choulis, J. Nelson, D. D. C. Bradley, S. Cook and J. R. Durrant, "Device Annealing Effect in Organic Solar Cells with Blends of Regioregular Poly(3-hexylthiophene) and Soluble Fullerene", Appl. Phys. Lett., 86, 063502 (2005).   DOI   ScienceOn
24 A. Zen, J. Pflaun, S. Hirschmann, W. Zhuang, F. Jaiser, U. Asawapirom, J. P. Rabe, U. Scherf and D. Neher, "Effect of Molecular Weight and Annealing of Poly(3-hexylthiophene)s on the Performance of Organic Field-Effect Transistors", Adv. Funct. Mater., 14(8), 757 (2004).   DOI   ScienceOn
25 G. Li, V. Shrotriya, Y. Yao, J. S. Huang and Y. Yang, "Manipulating Regioregular Poly(3-hexylthiophene):[6,6]-Phenyl- C61-butric Acid Methyl Ester Blends-Route Towards High Efficiency Polymer Solar Cells", J. Mater. Chem., 17, 3126 (2007).   DOI   ScienceOn
26 X. Wu, T.-A. Chen, R. D. Rieke, "A Study of Small Band- Gap Polymers-Head-to-Tail Regioregular Poly(3-(Alkylthio) Thiophenes) Prepared by Regioselective Synthesis Using Active Zinc", Macromolecules, 29(24), 7671 (1996).   DOI   ScienceOn
27 Y. Kim, A. M. Ballantyne, J. Nelson and D. D. C. Bradley, "Effects of Thickness and Thermal Annealing of the PEDOT:PSS Layer on the Performance of Polymer Solar Cells", Org. Electron., 10, 205 (2009).   DOI   ScienceOn
28 F. C. Chen, H. C. Tseng and C. J. Ko, "Solvent Mixtures for Improving Device Efficiency of Polymer Photovoltaic Devices", Appl. Phys. Lett., 92, 103316 (2008).   DOI   ScienceOn
29 S. Cho and K. Lee, "Heat-Treatment-Induced Enhancement in the Optical Spectra of Poly(3,4-Ethylenedioxythiophene)/ Poly(Stylenesulfonate) Films", J. Korean Phys. Soc., 46(4), 973 (2005).   과학기술학회마을