Browse > Article
http://dx.doi.org/10.12989/scs.2020.37.5.551

Nonlocal-integro-vibro analysis of vertically aligned monolayered nonuniform FGM nanorods  

Yuan, Yuan (School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology)
Zhao, Ke (School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology)
Zhao, Yafei (School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology)
Kiani, Keivan (Department of Civil Engineering, K.N. Toosi University of Technology)
Publication Information
Steel and Composite Structures / v.37, no.5, 2020 , pp. 551-569 More about this Journal
Abstract
Vibration of vertically aligned-monolayered-nonuniform nanorods consist of functionally graded materials with elastic supports has not been investigated yet. To fill this gap, the problem is examined using the elasticity theories of Eringen and Gurtin-Murdoch. The geometrical and mechanical properties of the surface layer and the bulk are allowed to vary arbitrarily across the length. The nonlocal-surface energy-based governing equations are established using differential-type and integro-type formulations, and solved by employing the Galerkin method by exploiting admissible modes approach and element-free Galerkin (EFG). Through various comparison studies, the effectiveness of the EFG in capturing both nonlocal-differential/integro-based frequencies is proved. A constructive parametric study is also conducted, and the roles of nanorods' diameter, length, stiffness of both inter-rod's elastic layer and elastic supports, power-law index of both constituent materials and geometry, nonlocal and surface effects on the dominant frequencies are revealed.
Keywords
axial vibration; vertically aligned-monolayered-nanorods; functionally graded materials (FGMs); nonlocal-integro-based model; surface energy; element-free Galerkin;
Citations & Related Records
Times Cited By KSCI : 11  (Citation Analysis)
연도 인용수 순위
1 Fleming, M., Chu, Y.A., Moran, B. and Belytschko, T. (1997), "Enriched element-free Galerkin methods for crack tip fields", Int. J. Numer. Method. Eng., 40, 1483-1504. https://doi.org/10.1002/(SICI)10970207(19970430)40:8%3C1483::AID-NME123%3E3.0.CO;2-6.   DOI
2 Radwan, A.F. (2019), "Quasi-3D integral model for thermomechanical buckling and vibration of FG porous nanoplates embedded in an elastic medium", Int. J. Mech. Sci., 157-158, 320-335. https://doi.org/10.1016/j.ijmecsci.2019.04.031.   DOI
3 Rajabi, K. and Hashemi, S.H. (2017), "Application of the generalized Hooke's law for viscoelastic materials (GHVMs) in nonlocal free damped vibration analysis of viscoelastic orthotropic nanoplates", Int. J. Mech. Sci., 124-125, 158-165. https://doi.org/10.1016/j.ijmecsci.2017.02.025.   DOI
4 Sahmani, S. and Aghdam, M.M. (2017), "Temperature-dependent nonlocal instability of hybrid FGM exponential shear deformable nanoshells including imperfection sensitivity", Int. J. Mech. Sci., 122, 129-142. https://doi.org/10.1016/j.ijmecsci.2017.01.009.   DOI
5 Akgoz, B. and Civalek, O. (2013), "Free vibration analysis of axially functionally graded tapered Bernoulli-Euler microbeams based on the modified couple stress theory", Compos. Struct., 98, 314-322. https://doi.org/10.1016/j.compstruct.2012.11.020.   DOI
6 Akgoz, B. and Civalek, O. (2013), "Longitudinal vibration analysis of strain gradient bars made of functionally graded materials (FGM)", Compos. Part B-Eng., 55, 263-268. https://doi.org/10.1016/j.compositesb.2013.06.035.   DOI
7 Aksencer, T. and Aydogdu, M. (2011), "Levy type solution method for vibration and buckling of nanoplates using nonlocal elasticity theory", Physica E, 43, 954-959. https://doi.org/10.1016/j.physe.2010.11.024.   DOI
8 Gayen, R.N. and Paul, R. (2018), "Phosphorous doping in vertically aligned ZnO nanorods grown by wet-chemical method", Nano-Struct. Nano-Obj., 13, 163-169. https://doi.org/10.1016/j.nanoso.2016.03.007.   DOI
9 Ghandourh, E.E. and Abdraboh, A.M. (2020), "Dynamic analysis of functionally graded nonlocal nanobeam with different porosity models". Steel Compos. Struct., 36(3), 293-305. https://doi.org/10.12989/scs.2020.36.3.293.   DOI
10 Ghayesh, M.H., Farokhi, H., Gholipour, A. and Tavallaeinejad, M. (2017), "Nonlinear bending and forced vibrations of axially functionally graded tapered microbeams", Int. J. Eng. Sci., 120, 51-62. https://doi.org/10.1016/j.ijengsci.2017.03.010.   DOI
11 Gu, Y.T. and Liu, G.R. (2001), "A meshless local Petrov-Galerkin (MLPG) formulation for static and free vibration analyses of thin plates", Comp. Model. Eng. Sci., 2, 463-476. http://dx.doi.org/10.3970/cmes.2001.002.463.   DOI
12 Gurtin, M.E. and Murdoch, A.I. (1975) "A continuum theory of elastic material surfaces", Arch. Ration. Mech. An., 57, 291-323. https://doi.org/10.1007/BF00261375.   DOI
13 Gurtin, M.E. and Murdoch, A.I. (1976), "Effect of surface stress on wave propagation in solids", J. Appl. Phys., 47, 4414-4421. https://doi.org/10.1063/1.322403.   DOI
14 Gurtin, M.E. and Murdoch, A.I. (1978), "Surface stress in solids", Int. J. Solids Struct., 14, 431-440. https://doi.org/10.1016/0020-7683(78)90008-2.   DOI
15 Shen, H.S. (2016), Functionally Graded Materials: Nonlinear Analysis of Plates and Shells. CRC press. https://doi.org/10.1201/9781420092578.   DOI
16 Shen, X., Wang, G. and Wexler, D. (2009), "Large-scale synthesis and gas sensing application of vertically aligned and double-sided tungsten oxide nanorod arrays", Sensor. Actuat. B-Chem., 143, 325-332. https://doi.org/10.1016/j.snb.2009.09.015.   DOI
17 Simsek, M. (2012), "Nonlocal effects in the free longitudinal vibration of axially functionally graded tapered nanorods", Comput. Mater. Sci., 61, 257-265. https://doi.org/10.1016/j.commatsci.2012.04.001.   DOI
18 Sukumar, N., Moran, B., Black, T. and Belytschko, T. (1997), "An element-free Galerkin method for three-dimensional fracture mechanics", Comput. Mech., 20, 170-175. https://doi.org/10.1007/s004660050235.   DOI
19 Pant, M., Singh, I.V. and Mishra, B.K. (2010), "Numerical simulation of thermo-elastic fracture problems using element free Galerkin method", Int. J. Mech. Sci., 52, 1745-1755. https://doi.org/10.1016/j.ijmecsci.2010.09.008.   DOI
20 Alibeigloo, A. (2011), "Free vibration analysis of nano-plate using three-dimensional theory of elasticity", Acta Mech., 222, 149-159. https://doi.org/10.1007/s00707-011-0518-7.   DOI
21 Angub, M.C.M., Vergara, C.J.T, Husay, H.A.F., Salvador, A.A., Empizo, M.J.F., Kawano, K., Minami, Y., Shimizu, T., Sarukura, N. and Somintac, A.S. (2018), "Hydrothermal growth of vertically aligned ZnO nanorods as potential scintillator materials for radiation detectors", J. Lumin., 203, 427-435. https://doi.org/10.1016/j.jlumin.2018.05.062.   DOI
22 Sun, Y., Fuge, G.M. and Ashfold, M.N.R. (2004), "Growth of aligned ZnO nanorod arrays by catalyst-free pulsed laser deposition methods", Chem. Phys. Lett., 396, 21-26. https://doi.org/10.1016/j.cplett.2004.07.110.   DOI
23 Thomas, T., Mathew, A. and Reshmi, R. (2018), "Vertically aligned a-MoO3 nanorods on commercial glass substrate by vacuum thermal evaporation", Mater. Lett., 227, 29-32. https://doi.org/10.1016/j.matlet.2018.04.126.   DOI
24 Ansari, R., Torabi, J. and Norouzzadeh, A. (2018), "Bending analysis of embedded nanoplates based on the integral formulation of Eringen's nonlocal theory using the finite element method", Physica B, 534, 90-97. https://doi.org/10.1016/j.physb.2018.01.025.   DOI
25 Arefi, M. (2018), "Nonlocal free vibration analysis of a doubly curved piezoelectric nano shell", Steel Compos. Struct., 27(4), 479-493. https://doi.org/10.12989/scs.2018.27.4.479.   DOI
26 Aria, A.I. and Friswell, M.I. (2019), "A nonlocal finite element model for buckling and vibration of functionally graded nanobeams", Compos. Part B-Eng., 166, 233-246. https://doi.org/10.1016/j.compositesb.2018.11.071.   DOI
27 Aydogdu, M. (2009), "Axial vibration of the nanorods with the nonlocal continuum rod model", Physica E, 41, 861-864. https://doi.org/10.1016/j.physe.2009.01.007.   DOI
28 Babu, E.S., Rani, B.J., Ravi, G., Yuvakkumar, R., Guduru, R.K., Ravichandran, S., Ameen, F., Kim, S. and Jeon, H.W. (2018), "Vertically aligned Cu-ZnO nanorod arrays for water splitting applications", Mater. Lett., 222, 58-61. https://doi.org/10.1016/j.matlet.2018.03.187.   DOI
29 Hammed, N.A., Aziz, A.A., Usman, A.I. and Qaeed, M.A. (2019), "The sonochemical synthesis of vertically aligned ZnO nanorods and their UV photodetection properties: Effect of ZnO buffer layer", Ultrason. Sonochem., 50, 172-181. https://doi.org/10.1016/j.ultsonch.2018.09.020.   DOI
30 Huang, Z. (2012), "Nonlocal effects of longitudinal vibration in nanorod with internal long-range interactions", Int. J. Solids Struct., 49, 2150-2154. https://doi.org/10.1016/j.ijsolstr.2012.04.020.   DOI
31 Karami, B., Janghorban, M. and Tounsi A. (2018), "Nonlocal strain gradient 3D elasticity theory for anisotropic spherical nanoparticles", Steel Compos. Struct., 27(2), 201-216. https://doi.org/10.12989/scs.2018.27.2.201.   DOI
32 Karami, B., Shahsavari, D., Li, L., Karami, M. and Janghorban, M. (2019), "Thermal buckling of embedded sandwich piezoelectric nanoplates with functionally graded core by a nonlocal second-order shear deformation theory", P. I. Mech. Eng. C-J Mec., 233, 287-301. https://doi.org/10.1177%2F0954406218756451.   DOI
33 Karlicic, D., Cajic, M., Murmu, T. and Adhikari, S. (2015), "Nonlocal longitudinal vibration of viscoelastic coupled double-nanorod systems", Eur. J. Mech. A-Solid., 49, 183-196. https://doi.org/10.1016/j.euromechsol.2014.07.005.   DOI
34 Ke, L.L., Wang, Y.S., Yang, J. and Kitipornchai, S. (2014), "The size-dependent vibration of embedded magneto-electro-elastic cylindrical nanoshells", Smart. Mater. Struct., 23, 125036. https://doi.org/10.1088/0964-1726/23/12/125036.   DOI
35 Ke, L.L., Wang, Y.S. and Reddy, J.N. (2014), "Thermo-electro-mechanical vibration of size-dependent piezoelectric cylindrical nanoshells under various boundary conditions", Compos. Struct., 116, 626-636. https://doi.org/10.1016/j.compstruct.2014.05.048.   DOI
36 Thongsuksai, W., Panomsuwan, G. and Rodchanarowan, A. (2018), "Fast and convenient growth of vertically aligned ZnO nanorods via microwave plasma-assisted thermal evaporation", Mater. Lett., 224, 50-53. https://doi.org/10.1016/j.matlet.2018.04.060.   DOI
37 Udupa, G., Rao, S.S. and Gangadharan, K.V. (2014), "Functionally graded composite materials: an overview", Proc. Mater. Sci., 5, 1291-1299. https://doi.org/10.1016/j.mspro.2014.07.442.   DOI
38 Wang, Y.Q., Liu, Y.F. and Yang, T.H. (2019), "Nonlinear thermo-electro-mechanical vibration of functionally graded piezoelectric nanoshells on winkler-pasternak foundations via nonlocal Donnell's nonlinear shell theory", Int. J. Struct. Stab. Dy., 19, 1950100. https://doi.org/10.1142/S0219455419501001.   DOI
39 Wang, J.X., Sun, X.W., Yang, Y., Huang, H., Lee, Y.C., Tan, O.K. and Vayssieres, L. (2006), "Hydrothermally grown oriented ZnO nanorod arrays for gas sensing applications", Nanotechnology, 17, 4995. https://doi.org/10.1088/0957-4484/17/19/037.   DOI
40 Wang, X., Summers, C.J. and Wang, Z.L. (2004), "Large-scale hexagonal-patterned growth of aligned ZnO nanorods for nano-optoelectronics and nanosensor arrays", Nano Lett., 4, 423-426. https://doi.org/10.1021/nl035102c.   DOI
41 Yi, J., Lee, J.M. and Park, W.I. (2011), "Vertically aligned ZnO nanorods and graphene hybrid architectures for high-sensitive flexible gas sensors", Sensor. Actuat. B-Chem., 155, 264-269. https://doi.org/10.1016/j.snb.2010.12.033.   DOI
42 Birman, V. and Byrd, L.W. (2007), "Modeling and analysis of functionally graded materials and structures", Appl. Mech. Rev., 60, 195. https://doi.org/10.1115/1.2777164.   DOI
43 Belkorissat, I., Houari, M.S.A., Tounsi, A., Bedia, E.A. and Mahmoud, S.R. (2015), "On vibration properties of functionally graded nano-plate using a new nonlocal refined four variable model", Steel Compos. Struct., 18(4), 1063-1081. http://dx.doi.org/10.12989/scs.2015.18.4.1063.   DOI
44 Belytschko, T., Lu, Y.Y. and Gu, L. (1994), "Element-free Galerkin methods", Int. J. Numer. Method. Eng., 37, 229-256. https://doi.org/10.1002/nme.1620370205.   DOI
45 Belytschko, T., Lu, Y.Y. and Gu, L. (1995), "Crack propagation by element-free Galerkin methods", Eng. Fract. Mech., 51, 295-315. https://doi.org/10.1016/0013-7944(94)00153-9.   DOI
46 Berghouti, H., Adda Bedia, E.A., Benkhedda, A. and Tounsi, A. (2019), "Vibration analysis of nonlocal porous nanobeams made of functionally graded material", Adv. Nano Res., 7(5), 351-364. https://doi.org/10.12989/anr.2019.7.5.351.   DOI
47 Challamel, N. and Wang, C.M. (2008), "The small length scale effect for a non-local cantilever beam: a paradox solved", Nanotechnology, 19, 345703. https://doi.org/10.1088/0957-4484/19/34/345703.   DOI
48 Chang, T.P. (2012), "Small scale effect on axial vibration of non-uniform and non-homogeneous nanorods", Comput. Mater. Sci., 54, 23-27. https://doi.org/10.1016/j.commatsci.2011.10.033.   DOI
49 Chen, X.L., Liu, G.R. and Lim, S.P. (2003), "An element free Galerkin method for the free vibration analysis of composite laminates of complicated shape", Compos. Struct., 59, 279-289. https://doi.org/10.1016/S0263-8223(02)00034-X.   DOI
50 Khodabakhshi, P. and Reddy, J.N. (2015), "A unified integro-differential nonlocal model", Int. J. Eng. Sci., 95, 60-75. https://doi.org/10.1016/j.ijengsci.2015.06.006.   DOI
51 Kiani, K. (2010), "Free longitudinal vibration of tapered nanowires in the context of nonlocal continuum theory via a perturbation technique", Physica E, 43, 387-397. https://doi.org/10.1016/j.physe.2010.08.022.   DOI
52 Kiani, K. (2013), "Vibration analysis of elastically restrained double-walled carbon nanotubes on elastic foundation subjected to axial load using nonlocal shear deformable beam theories", Int. J. Mech. Sci., 68, 16-34. https://doi.org/10.1016/j.ijmecsci.2012.11.011.   DOI
53 Kiani, K. (2014), "Nanoparticle delivery via stocky single-walled carbon nanotubes: a nonlinear-nonlocal continuum-based scrutiny", Compos. Struct., 116, 254-272. https://doi.org/10.1016/j.compstruct.2014.03.045.   DOI
54 Kiani, K. (2014), "Axial buckling analysis of vertically aligned ensembles of single-walled carbon nanotubes using nonlocal discrete and continuous models", Acta Mech., 225, 3569-3589. https://doi.org/10.1007/s00707-014-1107-3.   DOI
55 Kiani, K. (2015), "Nanomechanical sensors based on elastically supported double-walled carbon nanotubes", Appl. Math. Comput., 270, 216-241. https://doi.org/10.1016/j.amc.2015.07.114.   DOI
56 Kiani, K. (2016), "Nonlocal-integro-differential modeling of vibration of elastically supported nanorods", Physica E, 83, 151-163. https://doi.org/10.1016/j.physe.2016.04.018.   DOI
57 Chen, J.Y. and Sun, K.W. (2010), "Growth of vertically aligned ZnO nanorod arrays as antireflection layer on silicon solar cells", Sol. Energ. Mat. Sol. C, 94, 930-934. https://doi.org/10.1016/j.solmat.2010.01.005.   DOI
58 Chung, H.J. and Belytschko, T. (1998), "An error estimate in the EFG method", Comput. Mech., 21, 91-100. https://doi.org/10.1007/s004660050286.   DOI
59 Cordes, L.W. and Moran, B. (1996), "Treatment of material discontinuity in the element-free Galerkin method", Comput. Method. Appl. M., 139, 75-89. https://doi.org/10.1016/S0045-7825(96)01080-8.   DOI
60 Kiani K. (2016), "Free dynamic analysis of functionally graded tapered nanorods via a newly developed nonlocal surface energy-based integro-differential model", Compos. Struct., 139, 151-166. https://doi.org/10.1016/j.compstruct.2015.11.059.   DOI
61 Yuan, Y., Xu, K. and Kiani, K. (2020), "Torsional vibration of nonprismatically nonhomogeneous nanowires with multiple defects: Surface energy-nonlocal-integro-based formulations", Appl. Math. Model., 82, 17-44. https://doi.org/10.1016/j.apm.2020.01.030.   DOI
62 Zhang, D.P., Lei, Y.J. and Shen, Z.B. (2017), "Thermo-electro-mechanical vibration analysis of piezoelectric nanoplates resting on viscoelastic foundation with various boundary conditions", Int. J. Mech. Sci., 131-132, 1001-1015. https://doi.org/10.1016/j.ijmecsci.2017.08.031.   DOI
63 Zhang, N., Xie, S., Weng, B. and Xu, Y.J. (2016), "Vertically aligned ZnO-Au CdS core-shell nanorod arrays as an all-solid-state vectorial Z-scheme system for photocatalytic application", J. Mater. Chem. A, 4, 18804-18814. https://doi.org/10.1039/C6TA07845A.   DOI
64 Zhao, X., Lee, Y.Y. and Liew, K.M. (2009), "Free vibration analysis of functionally graded plates using the element-free kp-Ritz method", J. Sound Vib., 319, 918-939. https://doi.org/10.1016/j.jsv.2008.06.025.   DOI
65 Ebrahimi, F. and Barati, M.R. (2017), "Through-the-length temperature distribution effects on thermal vibration analysis of nonlocal strain-gradient axially graded nanobeams subjected to nonuniform magnetic field", J. Therm. Stresses, 40, 548-563. https://doi.org/10.1080/01495739.2016.1254076.   DOI
66 Ebrahimi, F. and Barati, M.R. (2017), "Buckling analysis of nonlocal third-order shear deformable functionally graded piezoelectric nanobeams embedded in elastic medium", J. Braz. Soc. Mech. Sci., 39, 937-952. https://doi.org/10.1007/s40430-016-0551-5.   DOI
67 Ebrahimi, F. and Barati, M.R. (2017), "Porosity-dependent vibration analysis of piezomagnetically actuated heterogeneous nanobeams", Mech. Syst. Signal. Pr., 93, 445-459. https://doi.org/10.1016/j.ymssp.2017.02.021.   DOI
68 Ebrahimi, F. and Barati, M.R. (2018), "Vibration analysis of piezoelectrically actuated curved nanosize FG beams via a nonlocal strain-electric field gradient theory", Mech. Adv. Mater. Struct., 25, 350-359. https://doi.org/10.1080/15376494.2016.1255830.   DOI
69 Kiani, K. and Pakdaman, H. (2020), "Bilaterally nonlocal dynamics of layer-by-layer assembly of double-walled carbon nanotubes accounting for intertube rigorous van der Waals forces", Eur. J. Mech. A-Solid, 80, 103876. https://doi.org/10.1016/j.euromechsol.2019.103876.   DOI
70 Kiani, K. and Roshan, M. (2019), "Nonlocal dynamic response of double-nanotube-systems for delivery of lagged-inertial-nanoparticles", Int. J. Mech. Sci., 152, 576-595. https://doi.org/10.1016/j.ijmecsci.2018.12.040.   DOI
71 Kiani, K. and Soltani, S. (2020), "Nonlocal longitudinal, flapwise, and chordwise vibrations of rotary doubly coaxial/non-coaxial nanobeams as nanomotors", Int. J. Mech. Sci., 168, 105291. https://doi.org/10.1016/j.ijmecsci.2019.105291.   DOI
72 Krongauz, Y. and Belytschko, T. (1998), "EFG approximation with discontinuous derivatives", Int. J. Numer. Method. Eng., 41, 1215-1233. https://doi.org/10.1002/(SICI)1097-0207(19980415)41:7%3C1215::AID-NME330%3E3.0.CO;2-%23.   DOI
73 Krysl, P. and Belytschko, T. (1995), "Analysis of thin plates by the element-free Galerkin method", Comput. Mech., 17, 26-35. https://doi.org/10.1007/BF00356476.   DOI
74 Krysl, P. and Belytschko, T. (1996), "Analysis of thin shells by the element-free Galerkin method", Int. J. Solids Struct., 33, 3057-3080. https://doi.org/10.1016/0020-7683(95)00265-0.   DOI
75 Kumar, S., Reddy, K.M., Kumar, A. and Devi, G.R. (2013), "Development and characterization of polymer-ceramic continuous fiber reinforced functionally graded composites for aerospace application", Aerosp. Sci. Tech., 26, 185-191. https://doi.org/10.1016/j.ast.2012.04.002.   DOI
76 Ebrahimi, F. and Dabbagh, A. (2017), "Nonlocal strain gradient based wave dispersion behavior of smart rotating magneto-electro-elastic nanoplates", Mater. Res. Express, 4, 025003. https://doi.org/10.1088/2053-1591/aa55b5.   DOI
77 Ebrahimi, F. and Farazmandnia, N. (2017), "Thermo-mechanical vibration analysis of sandwich beams with functionally graded carbon nanotube-reinforced composite face sheets based on a higher-order shear deformation beam theory", Mech. Adv. Mater. Struct., 24, 820-829. https://doi.org/10.1080/15376494.2016.1196786.   DOI
78 Ebrahimi, F. and Jafari, A. (2016), "A higher-order thermomechanical vibration analysis of temperature-dependent FGM beams with porosities", J. Eng., 9561504(20 pages). https://doi.org/10.1155/2016/9561504.   DOI
79 Lal, R. and Dangi, C. (2019), "Thermomechanical vibration of bi-directional functionally graded non-uniform timoshenko nanobeam using nonlocal elasticity theory", Compos. Part B-Eng., 172, 724-742. https://doi.org/10.1016/j.compositesb.2019.05.076.   DOI
80 Ebrahimi, F., Salari, E. and Hosseini, S.A.H. (2015), "Thermomechanical vibration behavior of FG nanobeams subjected to linear and non-linear temperature distributions", J. Therm. Stresses, 38, 1360-1386. https://doi.org/10.1080/01495739.2015.1073980.   DOI
81 Ebrahimi, F. and Salari, E. (2016), "Effect of various thermal loadings on buckling and vibrational characteristics of nonlocal temperature-dependent functionally graded nanobeams", Mech. Adv. Mater. Struct., 23, 1379-1397. https://doi.org/10.1080/15376494.2015.1091524.   DOI
82 Ebrahimi, F. and Salari, E. (2015), "Size-dependent thermo-electrical buckling analysis of functionally graded piezoelectric nanobeams", Smart Mater. Struct., 24, 125007. https://doi.org/10.1088/0964-1726/24/12/125007.   DOI
83 Liu, G.R. and Chen, X.L. (2001), "A mesh-free method for static and free vibration analyses of thin plates of complicated shape", J. Sound Vib., 241, 839-855. https://doi.org/10.1006/jsvi.2000.3330.   DOI
84 Liu, Y., Kang, Z.H., Chen, Z.H., Shafiq, I., Zapien, J.A., Bello, I., Zhang,W.J. and Lee, S.T. (2009), "Synthesis, characterization, and photocatalytic application of different ZnO nanostructures in array configurations", Cryst. Growth. Des., 9, 3222-3227. https://doi.org/10.1021/cg801294x.   DOI
85 Miyamoto, Y., Kaysser, W.A., Rabin, B.H., Kawasaki, A. and Ford, R.G. (2013), Functionally Graded Materials: Design, Processing and Applications (Vol. 5). Springer Science & Business Media. https://doi.org/10.1007/978-1-4615-5301-4.   DOI
86 Murmu, T. and Adhikari, S. (2010), "Nonlocal effects in the longitudinal vibration of doublenanorod systems", Physica E, 43, 415-422. https://doi.org/10.1016/j.physe.2010.08.023.   DOI
87 Narendar, S. and Gopalakrishnan, S. (2011), "Axial wave propagation in coupled nanorod system with nonlocal small scale effects", Compos. Part B-Eng., 42, 2013-2023. https://doi.org/10.1016/j.compositesb.2011.05.021.   DOI
88 Eringen, A.C. (1972), "Nonlocal polar elastic continua", Int. J. Eng. Sci., 10, 1-16. https://doi.org/10.1016/0020-7225(72)90070-5.   DOI
89 Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54, 4703-4710. https://doi.org/10.1063/1.332803.   DOI
90 Eringen, A.C. Nonlocal continuum field theories. Springer Science & Business Media, 2002. https://doi.org/10.1007/b97697.   DOI
91 Eringen, A.C. and Edelen, D.G.B. (1972), "On nonlocal elasticity", Int. J. Eng. Sci., 10, 233-248. https://doi.org/10.1016/0020-7225(72)90039-0.   DOI
92 Fattahi, A.M., Safaei, B. and Moaddab, E. (2019), "The application of nonlocal elasticity to determine vibrational behavior of FG nanoplates", Steel Compos. Struct., 32(2), 281-292. https://doi.org/10.12989/scs.2019.32.2.281.   DOI
93 Fernandez-Saez, J., Zaera, R., Loya, J.A. and Reddy, J.N. (2016), "Bending of Euler-Bernoulli beams using Eringen's integral formulation: a paradox resolved", Int. J. Eng. Sci., 99, 107-116. https://doi.org/10.1016/j.ijengsci.2015.10.013.   DOI
94 Nejad, M.Z., Rastgoo, A. and Hadi, A. (2014), "Exact elasto-plastic analysis of rotating disks made of functionally graded materials", Int. J. Eng. Sci., 85, 47-57. https://doi.org/10.1016/j.ijengsci.2014.07.009.   DOI
95 Norouzzadeh, A. and Ansari, R. (2017), "Finite element analysis of nano-scale Timoshenko beams using the integral model of nonlocal elasticity", Physica E, 88, 194-200. https://doi.org/10.1016/j.physe.2017.01.006.   DOI
96 Norouzzadeh, A., Ansari, R. and Rouhi, H. (2017), "Pre-buckling responses of Timoshenko nanobeams based on the integral and differential models of nonlocal elasticity: An isogeometric approach", Appl. Phys. A, 123, 330. https://doi.org/10.1016/j.physe.2017.01.006.   DOI