• Title/Summary/Keyword: built environment

Search Result 1,957, Processing Time 0.028 seconds

Application of Open Structure to Planning of the Built Environment - Focus on the Parc de La villete - (건축환경계획에 있어서 열린 구조의 적용에 관한 연구 - 라 빌레뜨 공원 분석을 중심으로 -)

  • 신명숙
    • Archives of design research
    • /
    • v.11 no.3
    • /
    • pp.69-76
    • /
    • 1998
  • The purpose of this study is to present a method of preparing for a more enduring built environment, being fully aware that, in consideration of time flowing from past to present, there is no ardlitecture in creation that is not abandoned. Efforts were made to find the problem solutions in relation to the hierardlial structure, evolvement and adaptation of living beings. The process of study was as follows, ·The built environment's affordance to human beings and the designer's role was explained. ·Having an understanding of the necessity of user minded planning, the architectural adaptation of the multi-layered hierarchy system of holon theory and adoption of time conception into architectural space were examined to explain that the importance in ardlitecture should be placed in transition, not in perfection. ·The design of Parc de La Villette by Bernard Tsdlumi was analysed from the above viewpoint. Having a practical case analysed, this study is expected to offer a basic information for use in case of visual presentation of a theoretical viewpoint.

  • PDF

Microstructural, Mechanical, and Durability Related Similarities in Concretes Based on OPC and Alkali-Activated Slag Binders

  • Vance, Kirk;Aguayo, Matthew;Dakhane, Akash;Ravikumar, Deepak;Jain, Jitendra;Neithalath, Narayanan
    • International Journal of Concrete Structures and Materials
    • /
    • v.8 no.4
    • /
    • pp.289-299
    • /
    • 2014
  • Alkali-activated slag concretes are being extensively researched because of its potential sustainability-related benefits. For such concretes to be implemented in large scale concrete applications such as infrastructural and building elements, it is essential to understand its early and long-term performance characteristics vis-a'-vis conventional ordinary portland cement (OPC) based concretes. This paper presents a comprehensive study of the property and performance features including early-age isothermal calorimetric response, compressive strength development with time, microstructural features such as the pore volume and representative pore size, and accelerated chloride transport resistance of OPC and alkali-activated binder systems. Slag mixtures activated using sodium silicate solution ($SiO_2$-to-$Na_2O$ ratio or $M_s$ of 1-2) to provide a total alkalinity of 0.05 ($Na_2O$-to-binder ratio) are compared with OPC mixtures with and without partial cement replacement with Class F fly ash (20 % by mass) or silica fume (6 % by mass). Major similarities are noted between these binder systems for: (1) calorimetric response with respect to the presence of features even though the locations and peaks vary based on $M_s$, (2) compressive strength and its development, (3) total porosity and pore size, and (4) rapid chloride permeability and non-steady state migration coefficients. Moreover, electrical impedance based circuit models are used to bring out the microstructural features (resistance of the connected pores, and capacitances of the solid phase and pore-solid interface) that are similar in conventional OPC and alkali-activated slag concretes. This study thus demonstrates that performance-equivalent alkali-activated slag systems that are more sustainable from energy and environmental standpoints can be proportioned.

Optimal inspection frequency to mitigate the risk of building system failure

  • Au-Yong, Cheong Peng;Ali, Azlan Shah;Ahmad, Faizah;Chua, Shirley Jin Lin
    • Structural Engineering and Mechanics
    • /
    • v.64 no.3
    • /
    • pp.347-352
    • /
    • 2017
  • The poor maintenance practice increases the possibility of system failure. Subsequently, the consequences of failure fall on the aspects of output, safety and healthy, environmental integrity, system quality, and customer satisfaction. Conditionbased maintenance is seen as a potential strategy to improve performance. Whereby, the key success factor of this maintenance strategy is identified as the system inspection. This study aims to investigate the association between system breakdown rate and frequency of inspection. A mixed method approach is implemented by distributing questionnaire and interviewing for data collection. Subsequently, descriptive analysis, correlation analysis and regression are adopted to analyse the collected data from 100 respondents and the results are validated with interview data of 10 interviewees. The research result establishes significant relationship between the system breakdown rate and the frequency of inspection. Additionally, the result of regression analysis confirms that the frequency of inspection is the significant predictor of system breakdown rate. Planning of accurate inspection frequency is crucial to secure the system performance. Hence, the research signifies the importance to carry out regular inspection towards the building systems and components. As a recommendation, the maintenance personnel should assess the risk criticality of the building systems. Then, continuously monitor the condition of critical building systems; regularly inspect the condition of non-critical building systems and randomly inspect all of them.

Synergic identification of prestress force and moving load on prestressed concrete beam based on virtual distortion method

  • Xiang, Ziru;Chan, Tommy H.T.;Thambiratnam, David P.;Nguyen, Theanh
    • Smart Structures and Systems
    • /
    • v.17 no.6
    • /
    • pp.917-933
    • /
    • 2016
  • In a prestressed concrete bridge, the magnitude of the prestress force (PF) decreases with time. This unexpected loss can cause failure of a bridge which makes prestress force identification (PFI) critical to evaluate bridge safety. However, it has been difficult to identify the PF non-destructively. Although some research has shown the feasibility of vibration based methods in PFI, the requirement of having a determinate exciting force in these methods hinders applications onto in-service bridges. Ideally, it will be efficient if the normal traffic could be treated as an excitation, but the load caused by vehicles is difficult to measure. Hence it prompts the need to investigate whether PF and moving load could be identified together. This paper presents a synergic identification method to determine PF and moving load applied on a simply supported prestressed concrete beam via the dynamic responses caused by this unknown moving load. This method consists of three parts: (i) the PF is transformed into an external pseudo-load localized in each beam element via virtual distortion method (VDM); (ii) then these pseudo-loads are identified simultaneously with the moving load via Duhamel Integral; (iii) the time consuming problem during the inversion of Duhamel Integral is overcome by the load-shape function (LSF). The method is examined against different cases of PFs, vehicle speeds and noise levels by means of simulations. Results show that this method attains a good degree of accuracy and efficiency, as well as robustness to noise.

A study on membrane technology for surface water treatment: Synthesis, characterization and performance test

  • Haan, Teow Yeit;Shah, Mubassir;Chun, Ho Kah;Mohammad, Abdul Wahab
    • Membrane and Water Treatment
    • /
    • v.9 no.2
    • /
    • pp.69-77
    • /
    • 2018
  • The use of membrane as an innovative technology for water treatment process has now widely been accepted and adopted to replace the conventional water treatment process in increasing fresh water production for various domestic and industrial purposes. In this study, ultrafiltration (UF) membranes with different formulation were fabricated via phase inversion method. The membranes were fabricated by varying the polymer concentration (16 wt%, 18 wt%, 20 wt%, and 21 wt%). A series of tests, such as field emission scanning electron microscope (FESEM), pore size and porosity, contact angle, and zeta potential were performed to characterize the membranes. The membrane performance in terms of permeation flux and rejection were evaluated using a laboratory bench-scale test unit with mine water, lake water and tube well as model feed solution. Long hour filtration study of the membranes provides the information on its fouling property. Few pore blocking mechanism models were proposed to examine the behaviour of flux reduction and to estimate the fouling parameters based on different degree of fouling. 21 wt% PVDF membrane with smaller membrane pore size showed an excellent performance for surface water treatment in which the treated water complied with NWQS class II standard.

Development and testing of a composite system for bridge health monitoring utilising computer vision and deep learning

  • Lydon, Darragh;Taylor, S.E.;Lydon, Myra;Martinez del Rincon, Jesus;Hester, David
    • Smart Structures and Systems
    • /
    • v.24 no.6
    • /
    • pp.723-732
    • /
    • 2019
  • Globally road transport networks are subjected to continuous levels of stress from increasing loading and environmental effects. As the most popular mean of transport in the UK the condition of this civil infrastructure is a key indicator of economic growth and productivity. Structural Health Monitoring (SHM) systems can provide a valuable insight to the true condition of our aging infrastructure. In particular, monitoring of the displacement of a bridge structure under live loading can provide an accurate descriptor of bridge condition. In the past B-WIM systems have been used to collect traffic data and hence provide an indicator of bridge condition, however the use of such systems can be restricted by bridge type, assess issues and cost limitations. This research provides a non-contact low cost AI based solution for vehicle classification and associated bridge displacement using computer vision methods. Convolutional neural networks (CNNs) have been adapted to develop the QUBYOLO vehicle classification method from recorded traffic images. This vehicle classification was then accurately related to the corresponding bridge response obtained under live loading using non-contact methods. The successful identification of multiple vehicle types during field testing has shown that QUBYOLO is suitable for the fine-grained vehicle classification required to identify applied load to a bridge structure. The process of displacement analysis and vehicle classification for the purposes of load identification which was used in this research adds to the body of knowledge on the monitoring of existing bridge structures, particularly long span bridges, and establishes the significant potential of computer vision and Deep Learning to provide dependable results on the real response of our infrastructure to existing and potential increased loading.

The Study of the Oceanic Environment Variations in the Artificial Upwelling Area (인공 용승 해역의 해양 환경 변화에 관한 연구)

  • Kim, Dong-Sun;Hwang, Suk-Bum;Kim, Sung-Hyun;Bae, Sang-Wan;Kheawwongjan, Apitha
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2008.05a
    • /
    • pp.147-151
    • /
    • 2008
  • In Southern Sea of Korea, there are upwelling area where artificial seamount were built and the environment variations (temperature, salinity, nutrient and current) of before and after built seamount were observed between 2002 and 2007. In 2002, before the seamount was built, there had stratification at 20-30m. And in 2007, seamount was built, stratification of the seamount at the front and back of it were changed by 10-40 m and 20-30 m, respectively. To know the reason of this results, we used temperature and salinity using Brunt-Vaisala Frequency and horizontal current using vertical shear and relative vorticity. They showed upwelling was mainly reason that changed the ocean environment.

  • PDF

Mechanical performance of sand-lightweight concrete-filled steel tube stub column under axial compression

  • Zhang, Xianggang;Deng, Dapeng;Lin, Xinyan;Yang, Jianhui;Fu, Lei
    • Structural Engineering and Mechanics
    • /
    • v.69 no.6
    • /
    • pp.627-635
    • /
    • 2019
  • In order to study the axial compression performance of sand-lightweight concrete-filled steel tube (SLCFST) stub columns, three circular SLCFST (C-SLCFST) stub column specimens and three SLCFST square (S-SLCFST) stub column specimens were fabricated and static monotonic axial compression performance testing was carried out, using the volume ratio between river sand and ceramic sand in sand-lightweight concrete (SLC) as a varying parameter. The stress process and failure mode of the specimens were observed, stress-strain curves were obtained and analysed for the specimens, and the ultimate bearing capacity of SLCFST stub column specimens was calculated based on unified strength theory, limit equilibrium theory and superposition theory. The results show that the outer steel tubes of SLCFST stub columns buckled outward, core SLC was crushed, and the damage to the upper parts of the S-SLCFST stub columns was more serious than for C-SLCFST stub columns. Three stages can be identified in the stress-strain curves of SLCFST stub columns: an elastic stage, an elastic-plastic stage and a plastic stage. It is suggested that AIJ-1997, CECS 159:2004 or AIJ-1997, based on superposition theory, can be used to design the ultimate bearing capacity under axial compression for C-SLCFST and S-SLCFST stub columns; for varying replacement ratios of natural river sand, the calculated stress-strain curves for SLCFST stub columns under axial compression show good fitting to the test measure curves.

Numerical Simulation on Disproportionate Collapse of the Tall Glulam Building under Fire Conditions

  • Zhao, Xuan;Zhang, Binsheng;Kilpatrick, Tony;Sanderson, Iain
    • International Journal of High-Rise Buildings
    • /
    • v.10 no.4
    • /
    • pp.311-321
    • /
    • 2021
  • Perception of the public to structural fires is very important because there are only a number of tall timber buildings constructed in the world. People are hesitating to accept tall timber buildings, so it is essential to ensure the first generation of tall timber buildings to a very high standard, especially fire safety. Right now, there are no specific design standards or regulations for fire design of tall timber buildings in Europe. Even though heavy timber members have better fire resistance than steel components, many conditions still need to be verified before considering the use of timber materials, e.g. fire spread, post-fire collapse, etc. This research numerically explores the structural behaviours of a tall Glulam building when one of its internal Glulam (Glued laminated timber) columns fails after sustaining a full 120-min standard fire and is removed from the established finite element building model created in SAP2000. The numerical results demonstrate that the failure and removal of the selected internal Glulam column may lead to the local failure of the adjacent CLT (Cross laminated timber) floor slabs, but will not lead to large disproportionate damage and collapse of the whole building. Here, the building is assumed to be located in Glasgow, Scotland, UK.

A Study on the Physical Quality Indicators and the Users' Satisfaction of Parking Space in Apartment Housing Estates, built in 1994-1998 (공동주택단지 주차공간의 정량적 계획특성과 이용자만족도에 관한 연구 - 1990년대 사례를 중심으로 -)

  • Kim, Gi Soo
    • KIEAE Journal
    • /
    • v.8 no.6
    • /
    • pp.39-46
    • /
    • 2008
  • The purpose of this research is to analyze the planning characteristics based on the physical quality indicators and the users' satisfaction of parking space in apartment housing through the case study of 36 housing estate samples which were built in 1994-1998. The contents of this research consists of three main parts. The first part is to analyze the characteristics of residential environment based on the quality indicators of parking space in apartment housing. The second part is to analyze the correlation of quality indicators of parking space and development conditions in apartment housing. The third part is to analyze the correlation of users' satisfaction and physical quality indicators of parking space, and to propose the planning methods which increase the quality of residential environment of parking space in apartment housing.