Browse > Article
http://dx.doi.org/10.12989/sss.2019.24.6.723

Development and testing of a composite system for bridge health monitoring utilising computer vision and deep learning  

Lydon, Darragh (School of Natural and Built Environment, Queen's University)
Taylor, S.E. (School of Natural and Built Environment, Queen's University)
Lydon, Myra (School of Natural and Built Environment, Queen's University)
Martinez del Rincon, Jesus (School of Electronics, Electrical Engineering and Computer Sciences, Queen's University)
Hester, David (School of Natural and Built Environment, Queen's University)
Publication Information
Smart Structures and Systems / v.24, no.6, 2019 , pp. 723-732 More about this Journal
Abstract
Globally road transport networks are subjected to continuous levels of stress from increasing loading and environmental effects. As the most popular mean of transport in the UK the condition of this civil infrastructure is a key indicator of economic growth and productivity. Structural Health Monitoring (SHM) systems can provide a valuable insight to the true condition of our aging infrastructure. In particular, monitoring of the displacement of a bridge structure under live loading can provide an accurate descriptor of bridge condition. In the past B-WIM systems have been used to collect traffic data and hence provide an indicator of bridge condition, however the use of such systems can be restricted by bridge type, assess issues and cost limitations. This research provides a non-contact low cost AI based solution for vehicle classification and associated bridge displacement using computer vision methods. Convolutional neural networks (CNNs) have been adapted to develop the QUBYOLO vehicle classification method from recorded traffic images. This vehicle classification was then accurately related to the corresponding bridge response obtained under live loading using non-contact methods. The successful identification of multiple vehicle types during field testing has shown that QUBYOLO is suitable for the fine-grained vehicle classification required to identify applied load to a bridge structure. The process of displacement analysis and vehicle classification for the purposes of load identification which was used in this research adds to the body of knowledge on the monitoring of existing bridge structures, particularly long span bridges, and establishes the significant potential of computer vision and Deep Learning to provide dependable results on the real response of our infrastructure to existing and potential increased loading.
Keywords
computer vision; multicamera; deep learning; structural health monitoring;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Zaurin, R., Khuc, T. and Catbas, F.N. (2015), "Hybrid sensorcamera monitoring for damage detection: Case study of a real bridge", J. Bridge Eng., 21(6), 1-27. DOI:10.1061/(ASCE)BE.1943.
2 Zaurin, R. and Catbas, F.N. (2011). "Structural health monitoring using video stream, influence lines, and statistical analysis", Struct. Health Monit., 10(3), 309-332. DOI:10.1177/1475921710373290.   DOI
3 Zhuo, L., Jiang, L.Y., Zhu, Z.Q., Li, J.F., Zhang, J., and Long, H.X. (2017), "Vehicle classification for large-scale traffic surveillance videos using convolutional neural networks", Mach. Vision. Appl., 28(7), 793-802. DOI: 10.1007/s00138-017-0846-2.   DOI
4 ACSE. (2017), "Report card for America's infrastructure", New York, NY, USA. URL:https://www.infrastructurereportcard.org/cat-item/bridges/
5 Arinaldi, A., Jaka, A.P. and Arlan, A.G. (2018), "Detection and classification of vehicles for traffic video analytics", Pro. C. Sci., 144(1), 259-268. DOI: 10.1016/J.PROCS.2018.10.527.
6 Cavaioni, M. (2018), "Deep learning series: Convolutional neural networks - machine learning bites - medium", Medium/Machine Learning. 2018. URL:https://medium.com/machine-learning-bites/deeplearningseries-convolutional-neural-networks-a9c2f2ee1524
7 Dong, C.Z., Celik, O. and Catbas, F.N. (2018), "Marker-free monitoring of the grandstand structures and modal identification using computer vision methods", Struct. Health Monit., DOI: 10.1177/1475921718806895.
8 Feng, M.Q., Feng, D.M, Fukuda, Y. and Mizuto M. (2015), "Nontarget vision sensor for remote measurement of bridge dynamic response", J. Bridge Eng., 20(12). DOI:10.1061/(ASCE)BE.1943-5592.0000747.
9 Fukuda, Y., Feng, M.Q. and Masanobu S. (2010), "Cost-effective vision-based system for monitoring dynamic response of civil engineering structures", Struct. Control Hwalth. Monit., 17(8), 918-936. DOI: 10.1002/stc.360.   DOI
10 Michael, F., Ahmed, E., He, X.F. and Conte, J.P. (2010), "Sensor network for structural health monitoring of a highway bridge", J. Comput. Civil Eng., 24(1), 11-24. DOI:10.1061/(ASCE)CP.1943-5487.0000005.   DOI
11 Graybeal, B.A., Phares, B.M., Rolander, D.D., Mark, M. and Glenn, W. (2002), "Visual inspection of highway bridges", J. Nondestruct. Eval., 21(3), 67-83. DOI:10.1023/A:1022508121821.   DOI
12 Hubel, D.H. and Wiesel T.N. (1962), "Receptive fields, binocular interaction and functional architecture in the cat's visual cortex", J. Physiol., 160(1), 106-154. DOI:10.1113/jphysiol.1962.sp006837.   DOI
13 Lydon,D., Lydon, M., Del Rincon, J.M., Taylor, S.E., Robinson, D., O'Brien, E. and Catbas, F.N. (2018), "Development and field testing of a time-synchronized system for multi-point displacement calculation using low-cost wireless vision-based sensors", IEEE Sens. J., 18(23), 9744-9754. DOI:10.1109/JSEN.2018.2853646.   DOI
14 Marcin, M., Krzysztof, M., Jakub, P., Malgorzata, K., Pawel, S., Artur, P., Tomasz, L. and Andrzej, Z. (2016), "Non-destructive testing of industrial structures with the use of multi-camera digital image correlation method", Eng. Fail. Anal., 69(11), 122-134. DOI: 10.1016/j.engfailanal.2016.02.002.   DOI
15 Krzysztof, M., Marcin, M., Tomasz, K. and Malgorzata, K. (2017), "Multi-camera digital image correlation method with distributed fields of view", Opt. Laser. Eng., 98(11), 198-204. DOI: 10.1016/J.OPTLASENG.2017.05.003.   DOI
16 Li, S.H., Lin, J.Z., Li, G.Q., Bai, T., Wang, H.Q. and Pang, Y. (2018), "Vehicle type detection based on deep learning in traffic scene", Pro. C. Sci., 131(2018), 564-572. DOI:10.1016/J.PROCS.2018.04.281
17 Park, J.W., Lee, J.J., Jung, H.J. and Myung, H. (2010), "Visionbased displacement measurement method for high-rise building structures using partitioning approach", NDT & E Int., 43(7), 642-647. DOI: 10.1016/j.ndteint.2010.06.009.   DOI
18 OECD (2016), "Transport infrastructure investment and maintenance spending", Paris, France. URL:https://stats.oecd.org/
19 Office of National Statistics (2018), "Developing new statistics of infrastructure: August 2018", London, UK. URL:https://www.ons.gov.uk/economy/economicoutputandproductivity/productivitymeasures/articles/developingnewmeasuresofinfrastructureinvestment/august2018
20 Ojio, T., Carey, C.H., OBrien, E.J., Doherty, C. and Taylor, S.E. (2016), "Contactless bridge weigh-in-motion", J. Bridge Eng., 21(7), 4016032. DOI: 10.1061/(ASCE)BE.1943-5592.0000776.   DOI
21 Piccardi, M. (2004), "Background subtraction techniques: A review", IEEE Inter. Confer. Sys., 4, 3099-3104. DOI:10.1109/ICSMC.2004.1400815.
22 RAC Foundation (2019), "Bridge maintenance backlog grows", London, UK. URL: https://www.racfoundation.org/mediacentre/bridge-maintenance-backlog-grows
23 Redmon, J. and Farhadi, A. (2018), "YOLOv3: An incremental improvement." arXiv:1804.02767, DOI:10.1109/CVPR.2017.690.
24 Ren, S.Q., He, K.M., Girshick, R. and Sun, J. (2015), "Faster RCNN:Towards real-time object detection with region proposal networks", IEEE T. Pattern Anal., 39(6), 1137-1149. DOI:10.1109/TPAMI.2016.2577031.
25 Ward, R. and Jakob D.H. (2007), "Public capital and economic growth: A critical survey", Per. Der Wirts., 8(1), 6-52. DOI:10.1111/1468-2516.00242.   DOI
26 See, J.E. (2012), "Visual inspection: A review of the literature." Off. Sci. Tech. Inform., 1-77. URL:https://pdfs.semanticscholar.org/5913/d3cbf8c389a8fdfe3fd5f2e880a0da03ba5a.pdf
27 World Economic Forum (2018), "The global competitiveness report 2018", Cologny, Switzerland. URL:http://reports.weforum.org/global-competitiveness-report-2018/competitiveness-rankings/#series=ROADINF
28 Simonyan, K. and Andrew, Z. (2015), "Very deep convolutional networks for large-scale image recognition", CoRR abs/1409.1556., DOI: arXiv:1409.1556
29 Stephen, G.A., Brownjohn, J.M.W. and Taylor, C.A. (1993). "Measurements of static and dynamic displacement from visual monitoring of the Humber Bridge", Eng. Struct., 15(3):197-208. DOI: 10.1016/0141-0296(93)90054-8.   DOI
30 Szegedy, C., Liu, W., Jia, Y.P., Pierre, S., Scott, R., Dragomir, A., Dumitru, E., Vincent, V. and Andrew, R. (2015), "Going deeper with convolutions", IEEE CVPR., DOI:10.1109/CVPR.2015.7298594.
31 Worth, D. (2010), "Introduction to modern information retrieval", Australian Academic and Research Libraries., 41(4), 305-306. DOI: 10.1080/00048623.2010.10721488.   DOI
32 Ye, X.W., Ni, Y.Q., Wai T.T., Wong, K.Y., Zhang, X.M. and Xu, F. (2013), "A vision-based system for dynamic displacement measurement of long-span bridges: Algorithm and verification", Smart Struct. Syst., 12(3-4), 363-379. https://doi.org/10.12989/sss.2013.12.3-4.363.   DOI
33 Ye, X.W., Yi, T.H., Wen, C. and Su, Y.H. (2015), "Reliabilitybased assessment of steel bridge deck using a mesh-insensitive structural stress method", Smart. Struct. Syst., 16(2), 367-382. https://doi.org/10.12989/sss.2015.16.2.367.   DOI
34 Ye, X.W., Dong, C.Z. and Liu, T. (2016), "Image-based structural dynamic displacement measurement using different multiobject tracking algorithms", Smart Struct Syst., 17(6), 935-956. https://doi.org/10.12989/sss.2016.17.6.935.   DOI
35 Zaurin, R. and Catbas, F.N. (2011), "Structural health monitoring using video stream, influence lines, and statistical analysis", Struct. Health Monit., 10(3), 309-332. DOI:10.1177/1475921710373290.   DOI