• 제목/요약/키워드: building information model(BIM)

검색결과 416건 처리시간 0.028초

A Study on the Development of a BIM-based Spatial Planning Simulation System for Architectural Planning Stage Support (건축기획단계 지원을 위한 BIM 기반 공간계획 시뮬레이션 시스템 개발에 관한 연구)

  • Choi, Sun-Young;Choi, Ju-Won;Kim, Ju-Hyung;Kim, Jae-Jun
    • Journal of KIBIM
    • /
    • 제1권2호
    • /
    • pp.19-23
    • /
    • 2011
  • The planning stage of an architectural project has much more significant effects on the cost or outcome of the project than other stages of the project. In addition, the importance of architectural planning has been further increasing according to the recent trend of construction projects becoming larger in scale and more complex. In spite of this, the current situation is that the planning stage work is not being systematically managed. Accordingly, the purpose of this study was to develop a BIM-based simulation system for providing support during architectural planning stage such as spatial planning & review, cost review, project owner requirements management, etc. It is easy to review various alternatives using this system that allows not only the modeling of space object modeling but also the instantaneous review of spatial area & layout, cost, etc. based on object information. In addition, it can be used as a communication tool with the project owner as it provides the visualized information and quantitative data of the building model, and the information created through this system can be delivered to the following stage for usage. It is thought that using this system, the entire project work including the architectural planning stage can be supported and even contributing to the advancement of architectural process.

Development of Construction Information Management Module through the Use of Vector-Photo (벡터사진 활용을 통한 시공정보 관리모듈 개발)

  • Kim, Kyoon-Tai;Lim, Myung-Gu;Kim, Gu-Taek
    • Journal of the Korea Institute of Building Construction
    • /
    • 제13권6호
    • /
    • pp.619-626
    • /
    • 2013
  • Many pictures are taken at a construction site, but the information of the pictures is not managed in an efficient and systematic manner. For this reason, when a construction worker has scant field experience or knowledge, it is hard to communicate with others efficiently. Therefore, the information of the pictures taken is not fully utilized in any deliberation or conflict among interested parties, facilities maintenance, and construction of another structure, although they were taken for those purposes. This study discusses the need for combining vector-photos with image and 5W and 1H information, and develops a prototype module for creating vector-photos and saving them in a server. The vector-photos taken can be saved to a server in real time, and efficiently managed by a DB system. If a system to link the vector-photos with a BIM model is developed in the future, it is expected that the vector information in the picture can be connected with the property information of an object. As a result, the vector-photos can be utilized in more diverse ways.

Big Data Based Urban Transportation Analysis for Smart Cities - Machine Learning Based Traffic Prediction by Using Urban Environment Data - (도시 빅데이터를 활용한 스마트시티의 교통 예측 모델 - 환경 데이터와의 상관관계 기계 학습을 통한 예측 모델의 구축 및 검증 -)

  • Jang, Sun-Young;Shin, Dong-Youn
    • Journal of KIBIM
    • /
    • 제8권3호
    • /
    • pp.12-19
    • /
    • 2018
  • The research aims to find implications of machine learning and urban big data as a way to construct the flexible transportation network system of smart city by responding the urban context changes. This research deals with a problem that existing a bus headway model is difficult to respond urban situations in real-time. Therefore, utilizing the urban big data and machine learning prototyping tool in weathers, traffics, and bus statues, this research presents a flexible headway model to predict bus delay and analyze the result. The prototyping model is composed by real-time data of buses. The data is gathered through public data portals and real time Application Program Interface (API) by the government. These data are fundamental resources to organize interval pattern models of bus operations as traffic environment factors (road speeds, station conditions, weathers, and bus information of operating in real-time). The prototyping model is implemented by the machine learning tool (RapidMiner Studio) and conducted several tests for bus delays prediction according to specific circumstances. As a result, possibilities of transportation system are discussed for promoting the urban efficiency and the citizens' convenience by responding to urban conditions.

Building Fire Monitoring and Escape Navigation System Based on AR and IoT Technologies (AR과 IoT 기술을 기반으로 한 건물 화재 모니터링 및 탈출 내비게이션 시스템)

  • Wentao Wang;Seung-Yong Lee;Sanghun Park;Seung-Hyun Yoon
    • Journal of the Korea Computer Graphics Society
    • /
    • 제30권3호
    • /
    • pp.159-169
    • /
    • 2024
  • This paper proposes a new real-time fire monitoring and evacuation navigation system by integrating Augmented Reality (AR) technology with Internet of Things (IoT) technology. The proposed system collects temperature data through IoT temperature measurement devices installed in buildings and automatically transmits it to a MySQL cloud database via an IoT platform, enabling real-time and accurate data monitoring. Subsequently, the real-time IoT data is visualized on a 3D building model generated through Building Information Modeling (BIM), and the model is represented in the real world using AR technology, allowing intuitive identification of the fire origin. Furthermore, by utilizing Vuforia engine's Device Tracking and Area Targets features, the system tracks the user's real-time location and employs an enhanced A* algorithm to find the optimal evacuation route among multiple exits. The paper evaluates the proposed system's practicality and demonstrates its effectiveness in rapid and safe evacuation through user experiments based on various virtual fire scenarios.

Support plan for introduction of BIM on Small and Medium Architectural firm (BIM 도입 활성화를 위한 중소건축사사무소 지원 방안)

  • Kim, Yong-Jun;Kim, Hong-Su;Kim, Myoung-Keun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • 제17권9호
    • /
    • pp.669-679
    • /
    • 2016
  • Architectural firms that would like to adopt the BIM are currently in an unfavorable position because of reduced orders, polarization of orders, and low price design. This study was conducted to evaluate plausible methods for supporting introduction of BIM into small sized firms. Before suggesting plans for support, we analyzed support projects and laws relating to support for small sized firms, after which we conducted a survey of small sized firms that support the project. The survey was completed by 242 architects and consisted of questions regarding the following aspects: current status and problems associated with BIM utilization, preference of certain policies for BIM introduction support, and reasonable level of support. After the survey, it was concluded that architectural firms are willing to use BIM and agree with the need for financial support for BIM program purchase and education, as well as to support BIM experts and fund low interest loans. In conclusion, it is proposed that support plans for small sized architectural firms in the areas of BIM introduction consulting, financial funding for the introductory process, provision of education and experts, order support, and promotions for accomplishment be provided.

Synergies between Digital Models and Physical Models in Convergence Design - Case Studies using Projects of Architectural Firms and Educational Environments - (건축설계에서 융합설계를 위한 디지털 모델과 물리 모델의 역할과 상호보완성 - 건축설계 회사와 교육환경의 사례를 중심으로 -)

  • Kim, Do-Young
    • Journal of KIBIM
    • /
    • 제9권2호
    • /
    • pp.29-44
    • /
    • 2019
  • This paper is to explore examples of complementary use of digital and physical models. The reason for this is to suggest a method for commercializing architectural design considering high technology. These cases are the practical and educational environment in which design processes based on digital computation technology are performed. Also, in this environment, analog design media (eg, physical models) still being used in the design process using digital computing. Indeed, in this environment, designers are exploiting digital and physical models to address the types of risks that can be discovered when designs are implemented and these risks. By analyzing these cases, we define the roles of digital and physical models to visualize and resolve risks. This paper focuses on one of method as "prototyping", which is used in the field of machinery and is a difficult method to carry out in the conventional design process. In particular, designers look for benefits that encourage designers in utilizing current digital computation technologies (eg, parametric design, simulation, building information models, and digital fabrication). Among the roles of the physical model, roles that can not be replaced by the digital model are explored. It is clear that this case-based study has difficulty in generalizing the design method. However, it helps the designers of today's practical and educational environment to verify and design the actual details of construction and operation when applying and developing unfamiliar materials and methods in the field of architecture.

Forthcoming Big Data in Smart Cities: Experiment for Machine Learning Based Happiness Estimation in Seoul City (빅데이터를 이용한 서울시 행복지수 분석 및 예측을 위한 실험 및 고찰)

  • Shin, Dongyoun;Song, Yu-Mi
    • Journal of KIBIM
    • /
    • 제7권1호
    • /
    • pp.28-35
    • /
    • 2017
  • Cities have complex system composed diverse activities. The activities in cities have complex relationship that creates diverse urban phenomena. Big Data is emerging technology in order to understand such complex network. This research aims to understand such relations by analysing the diverse city indexes. 28 indexes were collected in 25 of districts in Seoul city and analysed to find a weighted correlation. By defining the correlation values of certain years, it tries to predict the missed index values, "happiness" of each districts in other years. The result presents that the overall prediction accuracy 70.25%. However, for further discussion, the result is considered that this methods may not enough to use in practice, since the data has inconstant accuracy by different learning years.

A Study on Application of CPLM using Process Model of the Pre-design stage (건축 기획단계 프로세스 모델의 CPLM 적용에 관한 연구)

  • Park, Do-Young;Jun, Yeong-Jin;Moon, Sung-Kon;Kim, Ju-Hyung;Kim, Jae-Jun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 한국건축시공학회 2009년도 추계 학술논문 발표대회
    • /
    • pp.205-208
    • /
    • 2009
  • The purpose of this study is to apply the process model of the pre-design stage to CPLM(Construction Project Life-cycle Management). Life-cycle consists of 4 stage; Pre-design, Design, Construction, Maintenance. Each stage has organic relations between front and rear stage. Therefore it is important to manage and use the information data of each stage. But these data are not carried to the next stage smoothly, especially at the pre-design stage. It is even vague to define the process of the pre-design stage. To carry and share the information well, this study defines Pre-design stage process and CPLM at first, VA-Cityplanner which is the development system of the pre-design process model is applied to CPLM for the smooth current of the data between participants.

  • PDF

Exploring the Combined Use of LiDAR and Augmented Reality for Enhanced Vertical and Horizontal Measurements of Structural Frames (골조 수직, 수평 측정작업 시 LiDAR 및 AR 기술 적용방안 제시)

  • Park, Inae;Kim, Sangyong
    • Journal of the Korea Institute of Building Construction
    • /
    • 제23권3호
    • /
    • pp.273-284
    • /
    • 2023
  • This study is centered on the combined use of LiDAR(Light Detection and Ranging) and AR(Augmented Reality) technologies during vertical and horizontal frame measurements in construction projects. The intention is to enhance the quality control procedure, elevate accuracy, and curtail manual labor along with time expenditure. Present methods for accuracy inspection in frame construction often grapple with reliability concerns due to subjective interpretation and the scope for human error. This research recommends the application of LiDAR and AR technologies to counter these issues and augment the efficiency of the inspection process, along with facilitating the dissemination of results. The suggested technique involves the collection of 3D point cloud data of the frame utilizing LiDAR and leveraging this data for checks on construction accuracy. Furthermore, the inspection outcomes are fed into a BIM (Building Information Modeling) model, and the results are visualized via AR. Upon juxtaposing this methodology with the current approach, it is evident that it offers benefits in terms of objective inspection, speed, precise result sharing, and potential enhancements to the overall quality and productivity of construction projects.

A Study on DEM-based Automatic Calculation of Earthwork Volume for BIM Application

  • Cho, Sun Il;Lim, Jae Hyoung;Lim, Soo Bong;Yun, Hee Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • 제38권2호
    • /
    • pp.131-140
    • /
    • 2020
  • Recently the importance of BIM (Building Information Modeling) that enables 3D location-based design and construction work is being highlighted around the world. In Korea, the road map has been established to settle the design based on BIM using drone survey results by 2025. As the first step, BIM would be applied to road construction projects worth more than 50 billion Korean Won from 2020. On the other hand, drone survey regulation has been enacted and the data for drone survey cost were also included on Standard of construction estimate in 2020. However, more careful improvement is required to reflect drone survey results in BIM design and construction. Currently, Engineering instructions and Standard of construction estimate specifies that earthwork volume must be calculated by cross section method only. So it is required to add the method of DEM (Digital Elevation Model) based volume calculation on these regulations to realize BIM application. In order for that, this study verified the method of DEM based earthwork volume calculation. To get an accurate DEM for accurate volume computation, drone survey was carried out according to the drone survey regulation and then could get an accurate DEM data which have errors less than 3cm in X, Y and 6.8cm in H. As each DEM cell has 3D coordinate component, the volume of each cell can be calculated by obtaining the height of area of the cell then total volume is calculated by multiplying total number of cells by volume of each cell for the construction area. Verification for the new calculation method compare with existing method was carried out. The difference between DEM based volume by drone survey and cross section based volume by traditional survey was less than 1.33% and it can be seen that new DEM method will be able to be applied to BIM design and construction instead of cross section method.