• Title/Summary/Keyword: building energy demand

Search Result 345, Processing Time 0.028 seconds

Annual Energy Demand Analysis of a Lettuce Growing Plant Factory according to the Environmental Changes (상추 재배 식물공장의 환경변화에 따른 연중 에너지 요구량 분석)

  • Eun Jung Choi;Jaehyun Kim;Sang Min Lee
    • Journal of Bio-Environment Control
    • /
    • v.32 no.4
    • /
    • pp.278-284
    • /
    • 2023
  • Recently, a closed-type plant factory has been receiving attention as a advanced agricultural method. It has diverse advantages such as climate-independence, high productivity and stable year-round production. However, high energy cost caused by environmental control system is considered as a challenges of a closed-type plant factory. In order to reduce the energy cost, investigation about energy load which is directly connected to energy consumption needs to be conducted. In this study, energy load changes of a plant factory have been analytically analyzed according to the environmental changes. The target plant factory was a lettuce growing container farm. Firstly, the impact of photoperiod, set temperature and relative humidity change were examined. Under the climate condition of Daejeon in South Korea, increase of photoperiod and set temperature rose a yearly energy demand of a container farm. However, increase of set relative humidity decreased a yearly energy demand. Secondly, the climate environment effect was compared by investigating the energy demand under 9 different climate conditions. As a result, the difference between maximum and minimum value of the yearly energy demand showed 21.7%. Lastly, sensitivity analysis of each parameter (photoperiod, set temperature and relative humidity) has been suggested under 3 different climate conditions. The ratio of heating and cooling demand was varied depending on the climate, so the effect of each parameter became different.

The Analysis Study on Supplying Heat by Various Control Methods in District Heating System (지역난방 시스템에서 제어방법에 따른 공급열량의 해석적 연구)

  • Kim, Seong-Su;Jung, Sang-Hum;Moon, Youn-Jin;Cho, Sung-Hwan;Ryu, Jae-Sung
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1008-1013
    • /
    • 2009
  • The theoretical simulation to predict the variation of supplying heat according to control methods of DHS(District Heating System) have been done by TRNSYS(A Transient System Simulation Program) 16. The physical system for DHS consists of primary and secondary supplying heating loop which is divided by based on heat exchanger for heating demand of building. The simulation results showed that control of secondary supplying heat had influenced more than primary supplying heat control to total energy consumption of DHS. And the outside temperature reset control of primary supplying heating loop could be reduced until about 4% overheating of each zone.

  • PDF

Fabrication of Shingled Design Solar Module with Controllable Horizontal and Vertical Width (가로세로 폭의 제어가 가능한 슁글드 디자인 태양광 모듈 제조)

  • Min-Joon Park;Minseob Kim;Eunbi Lee;Yu-Jin Kim;Chaehwan Jeong
    • Current Photovoltaic Research
    • /
    • v.11 no.3
    • /
    • pp.75-78
    • /
    • 2023
  • Recently, the installation of photovoltaic modules in urban areas has been increasing. In particular, the demand for solar modules installed in a limited space is increasing. However, since the crystalline silicon solar module's size is proportional to the solar cell's size, it is difficult to manufacture a module that can be installed in a limited area. In this study, we fabricated a solar module with a shingled design that can control horizontal and vertical width using a bi-directional laser scribing method. We fabricated a string cell with a width of 1/5 compared to the existing shingled design string cells using a bi-directional laser scribing method, and we fabricated a solar module by connecting three strings in parallel. Finally, we achieved a conversion power of 5.521 W at a 103 mm × 320 mm area.

A Study on the Evaluation of Daylight Performance in High-Rise Residental Complex (초고층 주상복합 아파트의 실내 주광성능 평가에 관한 연구)

  • Kim, Kyung-Ah;Kim, Chang-Sung;Kim, Kang-Soo
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.3
    • /
    • pp.127-133
    • /
    • 2006
  • Recently, various building types such as Center-Core shape and Y-shape were studied as the demand for hight-rise residental complex increased. However, Center-Core type can make many Problems because the house unit can face to the north or west. Therefore, this study evaluated daylight conditions for four plan types in high-rise residental complex.

A Study on the Development of the Large Building Air-conditioning System with the Regenerative Ice-energy and its Computer Aided Design (빙축열을 이용한 대형빌딩 공기조화시스템 개발과 설계전산화에 관한 연구)

  • 권형정;김원영;김용모;김경근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.15 no.5
    • /
    • pp.38-46
    • /
    • 1991
  • In the design of an electric power plant, the capacity to meet the peak load demand is one of the important factors to be considered. This peak load usually occurs when the most of the cooling air-conditioning systems are being operated during daytime in summer season. Therefore, it is necessary to construct an additional electric power plant and to develop the new air-conditioning system for relieving the peak load. This paper analysed the performance characteristics of this experimental regenerative ice energy system by means of a bundle of the heat-pipes. And the result of this analysis was applied to the simulation of an air-conditioning system model. Also, an operation program of moisture air was made according to air load and in order to computerize the air-conditioning system a CAD program was developed by the properties of moisture air.

  • PDF

An experimental study for improvement in physical properties on the alumino-silicate binder for wood wool ceramic board (목모 세라믹 보드용 알루미노-실리케이트계 무기 바인더의 물리적 특성 향상에 관한 실험적 연구)

  • Park, Dong-Cheal;Yang, Wan-Hee;Choi, Hae-Young;Lee, Se-Hyun;Song, Tae-Hyup;Sim, Jong-Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.625-628
    • /
    • 2006
  • It is known that cement production not only consumes large amount of energy but also contributes substantially to the green house gas emission. Therefore, there is a demand to develope a new technology to produce energy efficient and environmental conscious cements. The most recent, wood wool ceramic board is being applied in various building material field, for example thermal insulating and acoustic absorption material. This paper focused on improvement of alumino-silicate binder's physical properties for wood wool ceramic board. As the result of this experiment, what we could obtain best fitted alumino-silicate binder's properties such as initial setting time, flow and compressive strength of 3 days aged, was 58min, 110% and 66.0Mpa. This result can be applicable to commercial wood wool ceramic board.

  • PDF

A Matlab/Simulink-Based PV array-Supercapacitor Model Employing SimPowerSystem and Stateflow Tool Box

  • Hong, Won-Pyo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.12
    • /
    • pp.18-29
    • /
    • 2014
  • This paper proposes the integration of photovoltaic (PV) and energy storage systems for sustained power generation. In this proposed system, whenever the PV system cannot completely meet load demands, the super capacitor provides power to meet the remaining load. A power management strategy is designed for the proposed system to manage power flows between PV array systems and supercapacitors (SC). The main task of this study was to design PV systems with storage strategies including MPPT with direct control and an advanced DC-link controller and to analyze dynamic model proposed for a PV-SC hybrid power generation system. In this paper, the simulation models for the hybrid energy system are developed using Matlab/Simulink, SimPowerSystems and Matlab/Stateflow tool. This is the key innovative contribution of the research paper. The system performances are verified by carrying out simulation studies using practical load demand profile and real weather data.

Analysis of Electricity Use of Commercial Buildings by End-Use (업무용 건물의 End-Use 전력 사용실태 분석)

  • Park, Jong-Jin;Rhee, Chang-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1998.07c
    • /
    • pp.1150-1152
    • /
    • 1998
  • Recently, our electric industry confronts a structural change and high competiveness environment in the course of deregulation. Rapid growth in electricity demand, financial need for new power plant construction, and envionmental problems have led to search for more efficient energy production and energy conservation techmologies. Especially, residential and commercial buildings consumes 40% of electricity demands and building energies are increasing more and more in Korea. The purpose of this paper is to analyze the electricity use of commercial buildings by end-use. Also, we will use it as a basic informations of DSM potential evaluation and evaluation process based on different approach by sector and type of potential.

  • PDF

Feasibility Research of the Active RFIDs for the Smart Occupancy Detection (지능형 재실 감지 서비스를 위한 능동형 RFID의 적용 타당성 연구)

  • Choi, Yeon-Suk;Park, Byoung-Tae
    • Journal of the Korea Safety Management & Science
    • /
    • v.13 no.2
    • /
    • pp.147-155
    • /
    • 2011
  • For an effective energy management in intelligent buildings it is necessary to gather information about position/absence of people and the level of population. In this paper the smart occupancy detection system based on the active RFID is developed to satisfy such a demand. The performance of the developed system is tested and verified through various experiments. Furthermore the feasibility test of the active RFID tag is performed to verify whether it can be used as a location-based occupancy sensor. The developed core technology can be also applied to other fields such as security, healthcare, smart home, etc.

An Experimental Study on the Physical Properties of Wood Wool Board Applied Inorganic Polymer Binder (무기 폴리머 결합재를 사용한 목모 보드의 물리적 특성에 관한 실험적 연구)

  • Choi, Hae-Young;Park, Dong-Cheol;Yang, Wan-Hee;Lee, Se-Hyun;Song, Tae-Hyup
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.853-856
    • /
    • 2006
  • It is known that cement production not only consumes large amount of energy but also contributes substantially to the green house gas emission. Therefore, there is a demand to develope a new technology to produce energy efficient and environmental conscious cements. The most recent, wood wool ceramic board is being applied in various building material field, for example thermal insulating and acoustic absorption material. This paper focused on improvement of the physical properties for wood wool ceramic board applied inorganic polymer binder. As the result of this experiment, what we could obtain better wood wool ceramic board's properties such as density, water contests, water resistance and band strength, was 0.46, $10{\sim}12%$, 1.9% and $40kgf/cm^2$. This result can be applicable to commercial wood wool ceramic board.

  • PDF