• Title/Summary/Keyword: buffer concentration

Search Result 745, Processing Time 0.025 seconds

Assessment of Corrosion Lifetime of a Copper Disposal Canister Based on the Finnish Posiva Methodology

  • Choi, Heui-Joo;Lee, Jongyoul;Cho, Dongkeun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.spc
    • /
    • pp.51-62
    • /
    • 2020
  • In this paper, an approach developed by the Finnish nuclear waste management organization, Posiva, for the construction license of a geological repository was reviewed. Furthermore, a computer program based on the approach was developed. By using the computer program, the lifetime of a copper disposal canister, which was a key engineered barrier of the geological repository, was predicted under the KAERI Underground Research Tunnel (KURT) geologic conditions. The computer program was developed considering the mass transport of corroding agents, such as oxygen and sulfide, through the buffer and backfill. Shortly after the closure of the repository, the corrosion depths of a copper canister due to oxygen in the pores of the buffer and backfill were calculated. Additionally, the long-term corrosion of a copper canister due to sulfide was analyzed in two cases: intact buffer and eroded buffer. Under various conditions of the engineered barrier, the corrosion lifetimes of the copper canister due to sulfide significantly exceeded one million years. Finally, this study shows that it is necessary to carefully characterize the transmissivity of rock and sulfide concentration during site characterization to accurately predict the canister lifetime.

A Control Volume Scheme for Three-Dimensional Transport: Buffer and Matrix Effects on a Decay Chain Transport in the Repository

  • Lee, Y.M.;Y.S. Hwang;Kim, S.G.;C.H. Kang
    • Nuclear Engineering and Technology
    • /
    • v.34 no.3
    • /
    • pp.218-231
    • /
    • 2002
  • Using a three-dimensional numerical code, B3R developed for nuclide transport of an arbitrary length of decay chain in the buffer between the canister and adjacent rock in a high- level radioactive waste repository by adopting a finite difference method utilizing the control- volume scheme, some illustrative calculations have been done. A linear sorption isotherm, nuclide transport due to diffusion in the buffer and the rock matrix, and advection and dispersion along thin rigid parallel fractures existing in a saturated porous rock matrix as well as diffusion through the fracture wall into the matrix is assumed. In such kind of repository, buffer and rock matrix are known to be important physico-chemical harriers in nuclide retardation. To show effects of buffer and rock matrix on nuclide transport in HLW repository and also to demonstrate usefulness of B3R, several cases of breakthrough curves as well as three- dimensional plots of concentration isopleths associated with these two barriers are introduced for a typical case of decay chain of $^{234}$ Ulongrightarrow$^{230}$ Thlongrightarrow$^{226}$ Ra, which is the most important chain as far as the human environment is concerned.

Dyeing Properties of Rose Flower Extracts on Silk Fabrics (장미꽃 추출물에 의한 견직물의 염색성)

  • Nam Sung Woo
    • Textile Coloration and Finishing
    • /
    • v.16 no.6
    • /
    • pp.10-15
    • /
    • 2004
  • The colorants were extracted from the flower leaf of rose using a buffer solution. Dyeing properties and the fastness of silk fabrics dyed with rose flower extracts were investigated. K/S values of dyed fabrics were increased as the concentration of rose flower extracts was increased. Optimum dyeing temperature of rose flower extracts was $30^{\circ}C$. Fastness were generally good except light fastness which was extremely poor.

Study on Polymerization Condition of Water-based Acrylic Adhesion (수분산성 아크릴계 점착제 중합 조건에 관한 연구)

  • Lee, Haeng Ja;Jang, Suk Hee;Chang, Sang Mok;Kim, Jong Min
    • Korean Chemical Engineering Research
    • /
    • v.48 no.5
    • /
    • pp.609-614
    • /
    • 2010
  • In this study, emulsion polymerizations for synthesizing acrylic pressure-sensitive adhesive(PSA) were carried out using 2-ethylhexyl acrylate(2-EHA), n-butyl acrylate(n-BA), methyl metacrylate(MMA) as fundamental monomers and acrylic acid(AAc) as a functional monomer in the presence of anionic SLS (sodium lauryl sulfate). To obtain the optimized synthetic condition in the polymerization, we analyzed the polymerization variables such as the effect of surfactant concentration and hydrophilic lipophilic values(HLB). At the same time, the final adhesive properties were also analyzed by the function of the initiator concentration and buffer concentration. In the results, the most stable emulsion was obtained at the surfactant concentrations between 3 and 5 wt%. It was also determined the effect of HLB value of nonionic surfactant and the initiator concentrations on the gel content. Stable emulsion is obtained using the surfactant having HLB value of 12.3. The rate of emulsion polymerization was increased at the initiator concentration greater than 1 wt%, but the stability of the emulsion was decreased. Finally, the effect of the buffer concentrations on the pH and the conversion of the acrylic emulsion product were experimentally measured. At the sodium bicarbonate concentration above 0.4 wt%, the buffer infulence was apparent. The buffer effect was fully acceptable at the concentrations between 0.6 and 0.8 wt% regardless of the monomer composition.

Effects of Methacrylamide Treatment on Silk Fibers I. Effects of Reaction Conditions on Weight Increase of Silk Fibers (견섬유에 대한 메타크릴아미드의 처리효과 I. 반응조건에 따른 견섬유의 무게 증가)

  • 신태섭;남중희
    • Journal of Sericultural and Entomological Science
    • /
    • v.33 no.2
    • /
    • pp.82-86
    • /
    • 1991
  • The treatments of methacrylamide on silk fibers were studied in aqueous solution using potassium persulfate as an initiator, and suitable conditions of reaction were determined for weighing of silk fibers. The results obtained were summarized as follows ; The weight of MAA-treated silk fibers increased with monomer concentration. The adequate concentration of potassium persulfate was found to be 1.7%. Maximum weight increase was shown at initial pH 3.8 of reaction liquor controlled by buffer solution.

  • PDF

Comparative Analysis of Dissolution and Refolding Processes for Inclusion Body Protein Renaturation (내포체 단백질 재생을 위한 용해 및 재접힘공정의 비교분석)

  • 김창성;김윤하;이은규
    • KSBB Journal
    • /
    • v.13 no.2
    • /
    • pp.133-140
    • /
    • 1998
  • Using rlFN-$\alpha$ and rhGH as the model proteins, the refolding performances of the published processes were evaluated and compared. Key engineering parameters such as the type of denaturant and this concentration, protein concentration in the refolding buffer, and pH and ionic strength of the buffer were experimentally investigated. Furthermore, the role of a co-solvent of surfactant type in aggregation reduction was also studied. Of the denaturants tested (8M urea, 6M guanidine HCI, 0.5% SDS), SDS at alkaline pH (9.5) and ambient temperature gave the highest recovery yield. The SDS process was effective in the refolding of observed where dissolution proceeded better under lower strength (10 mM) but aggregation was suppressed under higher strength (>50 mM.) When PEG-4000 and/or Tween were added as co-solvent or refolding-enhancing additive, 1.6-2 times higher yield was realized. The‘masking’of the hyrophobic patches located on the surface of the protein with the surfactant molecules was believed to be responsible for the considerable reduction in aggregation during refolding.

  • PDF

Effect of Cd Concentration on Characteristics of CdS Thin Films Prepared by Chemical Bath Deposition (화학용액증착법에 의하여 증착된 CdS 박막의 특성에 대한 Cd 농도의 영향)

  • Jung, SungHee;Chung, CheeWon
    • Applied Chemistry for Engineering
    • /
    • v.23 no.4
    • /
    • pp.377-382
    • /
    • 2012
  • CdS thin films have been widely used as a buffer layer of CIGS semiconductor solar cells to reduce the lattice mismatch between transparent electrode and absorber layer. In order to prepare the CdS films with high transparency and low resistivity, they were deposited by varying Cd concentration with the constant S concentration in the solution using chemical bath deposition method. They were analyzed in terms of structural, optical and electrical properties of CdS films according to the $[S^{2-}]/[Cd^{2+}]$ ratio. In the case of Cd concentration higher than S concectration, CdS thin films were formed mainly by cluster- by-cluster formation due to the homogeneous reaction between Cd and S in the solution. Therefore the grain size increased and the transmittance decreased. On the other hand, in the case of Cd concentration lower than S concentration, CdS films were formed by heterogeneous reaction on the substrate rather than in the solution. The CdS films have the grains with the uniform circular shape of a few hundreds ${\AA}$. As the Cd concentration increased in the solution, the $[S^{2-}]/[Cd^{2+}]$ ratio decreased and the resistivity decreased by the increase in the carrier concentration due to the formation S vacancy by the excess Cd.

Annealing and In Interlayer Effects on the Photovoltaic Properties of CBD-In2S3/CIGS Solar Cells (열처리와 In 중간층 적용에 의한 CBD-In2S3/CIGS 태양전지의 특성 향상)

  • Kim, Hee-Seop;Kim, Ji-Hye;Shin, Dong-Hyeop;Ahn, Byung-Tae
    • Korean Journal of Materials Research
    • /
    • v.21 no.8
    • /
    • pp.432-438
    • /
    • 2011
  • In this study, chemical bath deposited (CBD) indium sulfide buffer layers were investigated as a possible substitution for the cadmium sulfide buffer layer in CIGS thin film solar cells. The performance of the $In_2S_3$/CIGS solar cell dramatically improved when the films were annealed at $300^{\circ}C$ in inert gas after the buffer layer was grown on the CIGS film. The thickness of the indium sulfide buffer layer was 80 nm, but decreased to 60 nm after annealing. From the X-ray photoelectron spectroscopy it was found that the chemical composition of the layer changed to indium oxide and indium sulfide from the as-deposited indium hydroxide and sulfate states. Furthermore, the overall atomic concentration of the oxygen in the buffer layer decreased because deoxidation occurred during annealing. In addition, an In-thin layer was inserted between the indium sulfide buffer and CIGS in order to modify the $In_2S_3$/CIGS interface. The $In_2S_3$/CIGS solar cell with the In interlayer showed improved photovoltaic properties in the $J_{sc}$ and FF values. Furthermore, the $In_2S_3$/CIGS solar cells showed higher quantum efficiency in the short wavelength region. However, the quantum efficiency in the long wavelength region was still poor due to the thick buffer layer.

Synthesis of an Aspartame Precursor Using Thermolysin in Organic Two-Phase System (유기용매 이상계에서 Thermolysin에 의한 아스파탐 전구체 생산)

  • 이인영;안경섭;이선복
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.1
    • /
    • pp.61-67
    • /
    • 1992
  • The synthesis of N-benzyloxycarbonyl-L-aspartyl-L-phenylalanine methyl ester(ZAPM), a precursor of aspartame, from N-benzyloxycarbonyl-L-aspartic acid(Z-Asp) and L-phenylalanine methyl ester hydrochloride(L-PM-HCl) was investigated in ethylacetate-MES buffer two-phase system using thermolysin. In organic two-phase system, the degree of spontaneous hydrolysis of L-PM. HCl was significantly reduced with increasing the volume ratio of organic to aqueous phase. Stability of thermolysin in organic two-phase system was found to be higher than that in MES buffer solution. More than 90% of initial enzyme activity was maintained after 10 days of incubation in case that the volume of organic phase was equal to that of buffer phase, while the half life of thermolysin was about 2 days in aqueous buffer solution. The results of partitioning of substrates and product in organic two-phase system showed that the difference in partition coefficients between substrates and product was maximum at pH 5.5. The optimal pH for 2-APM synthesis in organic two-phase system was found to be 5.5-5.8, which is consistent with the value expected from the partition experiments. As the concentration of substrates was increased the conversion yield of Z-APM was increased with concomitant reduction of L-PMqHC1 hydrolysis. In case that the concentration of L-PM-HCl and Z-Asp were 160 mM and 80 mM respectively, the conversion yield of Z-APM reached 90% after 28 hrs of reaction. The yield obtained at different volume ratio of organic phase compares well with the predicted equilibrium constant in biphasic system.

  • PDF

Hydrothermal Behaviors and Long-term Stability of Bentonitic Buffer Material (벤토나이트 완충재의 열수거동 및 장기건전성 연구)

  • Lee, Jae-Owan;Cho, Won-Jin
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.5 no.2
    • /
    • pp.145-154
    • /
    • 2007
  • In hydrothermal reaction tests, smectite-to-illite conversion was identified using a domestic bentonite which is favorably considered as a buffer material, and its dependency on various hydrothermal conditions was investigated. The analysis results of the XRD and Si concentration indicated that the smectite-to-illite conversion was a major process of bentonite alteration under the hydrothermal conditions. The temperature, potassium concentration in solution, and pH were observed to significantly affect the smectite-to illite conversion. A model of conversion reaction rate was suggested to evaluate the long-term stability of smectite composing a major constituent of bentonitic buffer. It was expected from the evaluation results that the smectite would keep its integrity for very long disposal time under a normal condition, whitens it might be converted to illite by 50 percent after over $5{\times}10^4$ year of disposal time under a conservative condition and consequently lose its swelling capacity as a buffer material of a repository.

  • PDF