Effect of Cd Concentration on Characteristics of CdS Thin Films Prepared by Chemical Bath Deposition

화학용액증착법에 의하여 증착된 CdS 박막의 특성에 대한 Cd 농도의 영향

  • Jung, SungHee (Department of Chemical Engineering, Inha University) ;
  • Chung, CheeWon (Department of Chemical Engineering, Inha University)
  • 정성희 (인하대학교 화학공학과) ;
  • 정지원 (인하대학교 화학공학과)
  • Published : 2012.08.10

Abstract

CdS thin films have been widely used as a buffer layer of CIGS semiconductor solar cells to reduce the lattice mismatch between transparent electrode and absorber layer. In order to prepare the CdS films with high transparency and low resistivity, they were deposited by varying Cd concentration with the constant S concentration in the solution using chemical bath deposition method. They were analyzed in terms of structural, optical and electrical properties of CdS films according to the $[S^{2-}]/[Cd^{2+}]$ ratio. In the case of Cd concentration higher than S concectration, CdS thin films were formed mainly by cluster- by-cluster formation due to the homogeneous reaction between Cd and S in the solution. Therefore the grain size increased and the transmittance decreased. On the other hand, in the case of Cd concentration lower than S concentration, CdS films were formed by heterogeneous reaction on the substrate rather than in the solution. The CdS films have the grains with the uniform circular shape of a few hundreds ${\AA}$. As the Cd concentration increased in the solution, the $[S^{2-}]/[Cd^{2+}]$ ratio decreased and the resistivity decreased by the increase in the carrier concentration due to the formation S vacancy by the excess Cd.

CIGS 화합물 반도체 태양전지에서 광흡수층과 상부투명전극 간의 격자부정합을 낮추기 위해 buffer layer로써 CdS 박막이 적용된다. 높은 광투과도와 낮은 비저항을 갖는 CdS 박막을 제조하기 위하여 화학적 용액 증착법에 의해 반응용액 내의 S 용액의 농도를 고정하고 Cd 용액의 농도를 변화시켜 CdS 박막을 제조하여 특성을 조사하였다. $[S^{2-}]/[Cd^{2+}]$ 농도비에 따른 박막의 구조적, 광학적 및 전기적 특성을 조사하였다. Cd의 농도가 S의 농도보다 높을 경우에는 균일반응이 촉진되어 CdS 결정들이 클러스터 형태로 기판에 흡착되어 결정 크기가 증가하고 광투과율이 감소하였다. 반면, Cd의 농도가 S의 농도보다 낮을 경우에는 용액 내에서 보다 기판위에서 CdS 결정입자가 생성되는 불균일반응에 의해 결정이 생성 및 성장되었고 수백 옹스트롱의 작고 균일한 구형 입자가 생성되었다. Cd 농도가 증가할수록 과잉 Cd가 증가하여 S 공극 생성으로 $[S^{2-}]/[Cd^{2+}]$ 조성비는 감소하였고 CdS 박막의 전하 농도가 증가되어 비저항이 감소되었다.

Keywords

References

  1. S. M. Kong, Y. Xiao, E. H. Kim, and C. W. Chung, Korean Chem. Eng. Res., 49, 195 (2011).
  2. A. Bollero, M. Andres, C. Garcia, J. Abajo, and M. Gutierrez, Phys. Status Solidi A, 206, 540 (2009). https://doi.org/10.1002/pssa.200824405
  3. U. Rau and H. W. Schock, Appl. Phys. A, 69, 131 (1999). https://doi.org/10.1007/s003390050984
  4. N. Fujimura, T. Nishihara, S. Goto, J. Xu, and T. Ito, J. Cryst. Growth, 130, 269 (1993). https://doi.org/10.1016/0022-0248(93)90861-P
  5. S. M. Kong, Y. Xiao, E. H. Kim, and C. W. Chung, J. Nanosci. Nanotechnol,, 11, 1 (2011). https://doi.org/10.1166/jnn.2011.3839
  6. K. S. Ramaiah, R. D. Pilkington, A. E. Hill, R. D. Tomlinson, and A. K. Bhatmagar, Mater. Chem. and Phys., 68, 22 (2001). https://doi.org/10.1016/S0254-0584(00)00281-9
  7. W. C. Song, J. Kor. Inst. Surf. Eng., 38, 112 (2005).
  8. M. A. Martinez, C. Guillen, and J. Herrero, Appl. Surf. Science., 136, 8 (1998). https://doi.org/10.1016/S0169-4332(98)00331-6
  9. A. Y. Jaber, S. N. Alamri, M. S. Aida, M. Benghanem, and A. A. Abdelaziz, J. Alloy. Comp., 529, 63 (2012). https://doi.org/10.1016/j.jallcom.2012.03.093
  10. L. Wenyi, C. Zun, C. Qiulong, and Z. Zhibin, Materials Lett., 59, 1 (2005). https://doi.org/10.1016/j.matlet.2004.04.008
  11. H. Moualkia, S. Hariech, M. S. Aida, N. Attaf, and E. L. Laifa, J. Phys. D : Appl. Phys., 42, 1 (2009).
  12. W. C. Song, J. Kor. Inst. Surf. Eng., 41, 1 (2008)
  13. S. Mathew, P. S. Mukerjee, and K. P. Vijauakumar, Thin Solid Films, 254, 278 (1995). https://doi.org/10.1016/0040-6090(94)06257-L
  14. M. Tsuji, T. Ararmoto, H. Ohyama, T. Hibino, and K. Omura, J. Cryst. Growth, 214, 1142 (2000).
  15. S. G. Hur, H. J. Cho, K. W. Park, J. K. Ahn, and S. G. Yoon, J. Kor. Ins. Elec. and Elec Mater. Eng., 22, 1023 (2009).
  16. T. Chu, S. Chu, N. Shultz, C. Wang, and C. Wu, J. Electrochem. Soc., 139, 2443 (1992). https://doi.org/10.1149/1.2221246
  17. H. Metin, M. Ari, S. Erat, S. Durms, M. Bozoklu, and A. Braun, J. Mater. Res., 25, 189 (2010). https://doi.org/10.1557/JMR.2010.0025
  18. A. Kylner, J. Appl. Phys. 85, 6858 (1999). https://doi.org/10.1063/1.370204
  19. H. Khallaf, I. O. Oladeji, G. Chai, and L. Chow, Thin Solid Films, 516, 7306 (2008). https://doi.org/10.1016/j.tsf.2008.01.004
  20. F. Liu, Y. Lai, J. Liu, B. Wang, S. Kuang, Z. Zhang, J. Li, and Y. Liu, J. alloy and compounds, 493, 305 (2010). https://doi.org/10.1016/j.jallcom.2009.12.088
  21. J. H. Lee, J. KIEEME, 21, 620 (2008).
  22. O. Z. Angel and R. L. Morales, Physical Review B, 62, 13064 (2000). https://doi.org/10.1103/PhysRevB.62.13064