Browse > Article

Effect of Cd Concentration on Characteristics of CdS Thin Films Prepared by Chemical Bath Deposition  

Jung, SungHee (Department of Chemical Engineering, Inha University)
Chung, CheeWon (Department of Chemical Engineering, Inha University)
Publication Information
Applied Chemistry for Engineering / v.23, no.4, 2012 , pp. 377-382 More about this Journal
Abstract
CdS thin films have been widely used as a buffer layer of CIGS semiconductor solar cells to reduce the lattice mismatch between transparent electrode and absorber layer. In order to prepare the CdS films with high transparency and low resistivity, they were deposited by varying Cd concentration with the constant S concentration in the solution using chemical bath deposition method. They were analyzed in terms of structural, optical and electrical properties of CdS films according to the $[S^{2-}]/[Cd^{2+}]$ ratio. In the case of Cd concentration higher than S concectration, CdS thin films were formed mainly by cluster- by-cluster formation due to the homogeneous reaction between Cd and S in the solution. Therefore the grain size increased and the transmittance decreased. On the other hand, in the case of Cd concentration lower than S concentration, CdS films were formed by heterogeneous reaction on the substrate rather than in the solution. The CdS films have the grains with the uniform circular shape of a few hundreds ${\AA}$. As the Cd concentration increased in the solution, the $[S^{2-}]/[Cd^{2+}]$ ratio decreased and the resistivity decreased by the increase in the carrier concentration due to the formation S vacancy by the excess Cd.
Keywords
chemical bath deposition; CdS; solar cell; buffer layer;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. Y. Jaber, S. N. Alamri, M. S. Aida, M. Benghanem, and A. A. Abdelaziz, J. Alloy. Comp., 529, 63 (2012).   DOI
2 S. M. Kong, Y. Xiao, E. H. Kim, and C. W. Chung, Korean Chem. Eng. Res., 49, 195 (2011).
3 A. Bollero, M. Andres, C. Garcia, J. Abajo, and M. Gutierrez, Phys. Status Solidi A, 206, 540 (2009).   DOI   ScienceOn
4 U. Rau and H. W. Schock, Appl. Phys. A, 69, 131 (1999).   DOI   ScienceOn
5 N. Fujimura, T. Nishihara, S. Goto, J. Xu, and T. Ito, J. Cryst. Growth, 130, 269 (1993).   DOI   ScienceOn
6 S. M. Kong, Y. Xiao, E. H. Kim, and C. W. Chung, J. Nanosci. Nanotechnol,, 11, 1 (2011).   DOI   ScienceOn
7 K. S. Ramaiah, R. D. Pilkington, A. E. Hill, R. D. Tomlinson, and A. K. Bhatmagar, Mater. Chem. and Phys., 68, 22 (2001).   DOI   ScienceOn
8 W. C. Song, J. Kor. Inst. Surf. Eng., 38, 112 (2005).
9 M. A. Martinez, C. Guillen, and J. Herrero, Appl. Surf. Science., 136, 8 (1998).   DOI   ScienceOn
10 L. Wenyi, C. Zun, C. Qiulong, and Z. Zhibin, Materials Lett., 59, 1 (2005).   DOI   ScienceOn
11 H. Moualkia, S. Hariech, M. S. Aida, N. Attaf, and E. L. Laifa, J. Phys. D : Appl. Phys., 42, 1 (2009).
12 W. C. Song, J. Kor. Inst. Surf. Eng., 41, 1 (2008)
13 S. Mathew, P. S. Mukerjee, and K. P. Vijauakumar, Thin Solid Films, 254, 278 (1995).   DOI   ScienceOn
14 M. Tsuji, T. Ararmoto, H. Ohyama, T. Hibino, and K. Omura, J. Cryst. Growth, 214, 1142 (2000).
15 S. G. Hur, H. J. Cho, K. W. Park, J. K. Ahn, and S. G. Yoon, J. Kor. Ins. Elec. and Elec Mater. Eng., 22, 1023 (2009).
16 T. Chu, S. Chu, N. Shultz, C. Wang, and C. Wu, J. Electrochem. Soc., 139, 2443 (1992).   DOI
17 H. Metin, M. Ari, S. Erat, S. Durms, M. Bozoklu, and A. Braun, J. Mater. Res., 25, 189 (2010).   DOI   ScienceOn
18 A. Kylner, J. Appl. Phys. 85, 6858 (1999).   DOI   ScienceOn
19 H. Khallaf, I. O. Oladeji, G. Chai, and L. Chow, Thin Solid Films, 516, 7306 (2008).   DOI   ScienceOn
20 F. Liu, Y. Lai, J. Liu, B. Wang, S. Kuang, Z. Zhang, J. Li, and Y. Liu, J. alloy and compounds, 493, 305 (2010).   DOI   ScienceOn
21 J. H. Lee, J. KIEEME, 21, 620 (2008).
22 O. Z. Angel and R. L. Morales, Physical Review B, 62, 13064 (2000).   DOI   ScienceOn