• Title/Summary/Keyword: bubble point pressure

Search Result 42, Processing Time 0.026 seconds

Solubility of carbon dioxide in ionic liquids with methylsulfate anion (Methylsulfate 음이온을 갖는 이온성 액체에 대한 이산화탄소의 용해도)

  • Jung, Jun-Young;Lee, Byung-Chul
    • Analytical Science and Technology
    • /
    • v.24 no.6
    • /
    • pp.467-476
    • /
    • 2011
  • Solubility data of carbon dioxide ($CO_2$) in the imidazolium-based ionic liquids with methylsulfate anion are presented at pressures up to about 45 MPa and at temperatures between 303.15 K and 343.15 K. The ionic liquids studied in this work were 1-ethyl-3-methylimidazolium methylsulfate ([emim][$mSO_4$]), 1-butyl-3-methylimidazolium methylsulfate ([bmim][$mSO_4$]). The solubilities of $CO_2$ were determined by measuring the bubble point or cloud point pressures of the binary mixtures using a high-pressure equilibrium apparatus equipped with a variable-volume view cell. The equilibrium pressure increased very steeply at high $CO_2$ compositions. The $CO_2$ solubility in ionic liquids increased with increase of the total length of alkyl chains attached to the imidazolium cation of the ionic liquids. The phase equilibrium data for the $CO_2$ + ionic liquid systems have been correlated using the Peng-Robinson equation of state.

Effects of the Free-Stream Turbulence and Surface Trip Wire on the Flow past a Sphere (자유류 난류와 표면 트립 와이어가 구 주위 유동에 미치는 영향)

  • Son, Kwang-Min;Choi, Jin;Jeon, Woo-Pyung;Choi, Hae-Cheon
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.187-190
    • /
    • 2006
  • In the present study, effects of tree-stream turbulence and surface trip wire on the flow past a sphere at $Re\;=\;0.4\;{\times}\;10^5\;{\sim}\;2.8\;{\times}\;10^5$ are investigated through wind tunnel experiments. Various types of grids are installed upstream of the sphere in order to change the tree-stream turbulence intensity. In the case of surface trip wire, 0.5mm and 2mm trip wires are attached from $20^{\circ}\;{\sim}\;90^{\circ}$ at $10^{\circ}$ interval along the streamwise direction. To investigate the flow around a sphere, drag measurement using a load cell, surface-pressure measurement, surface visualization using oil-flow pattern and near-wall velocity measurement using an I-type hot-wire probe are conducted. In the variation of free-stream turbulence, the critical Reynolds number decreases and drag crisis occurs earlier with increasing turbulence intensity. With increasing Reynolds number, the laminar separation point moves downstream, but the reattachment point after laminar separation and the main separation point are fixed, resulting in constant drag coefficient at each free-stream turbulence intensity. At the supercritical regime, as Reynolds number is further increased, the separation bubble is regressed but the reattachment and the main separation points are fixed. In the case of surface trip wire directly disturbing the boundary layer flow, the critical Reynolds number decreases further with trip wire located more downstream. However, the drag coefficient after drag crisis remains constant irrespective of the trip location.

  • PDF

Development and Basic Performance Characterization of Neutralized Fabric Filter (제전사여과포의 개발 및 기초성능 규명)

  • 박영옥;구철오;임정환;김홍룡;손재익;이영우
    • Journal of Energy Engineering
    • /
    • v.7 no.1
    • /
    • pp.57-64
    • /
    • 1998
  • A neutralized fabric filter of which major raw materials were polyester and stainless steel fibers was developed and its physiochemical properties and basic filter characteristics were investigated. Four finds of dusts generated in the typical domestic industry were used, which were coke dust from a steel manufacturing process, cement dust from a cement manufacturing process, flu ash from a fluidized-bed combustor, and incinerator ash from a waste plastics incinerator. The physicochemical properties of the neutralized fabric filter were analyzed in terms of changes in tensile strength and initial elastic modulus under $SO_2$ and $NO_2$ atmospheres, mean flow pore pressure, bubble point pore diameter, mean flow pore diameter, and pore size distribution. In addition, the pressure drop, dust penetration, and figure of merit for the fabric filter were investigated in a bench-scale filter testing unit. The pressure drop increased as the filtration velocity and dust loading increased, and its increasing shape depended on the type of dust. The dust penetration rapidly decreased as the dust loading increased irrespective of the type of dust. The figures of merit for the fabric filters increased in the early stage of filtration and then showed rapid decreases followed maintaining a constant level.

  • PDF

Solubility of Carbon Dioxide in Poly(ethylene glycol) Dimethyl Ether (Poly(ethylene glycol) Dimethyl Ether에 대한 이산화탄소의 용해도)

  • Lee, Eun-Ju;Yoo, Jung-Deok;Lee, Byung-Chul
    • Korean Chemical Engineering Research
    • /
    • v.55 no.2
    • /
    • pp.230-236
    • /
    • 2017
  • Solubility data of carbon dioxide ($CO_2$) in poly(ethylene glycol) dimethyl ether (PEGDME) are presented at pressures up to about 50 bar and at temperatures between 303 K and 343 K. The solubilities of $CO_2$ were determined by measuring the bubble point pressures of the $CO_2+PEGDME$ mixtures with various compositions using a high-pressure equilibrium apparatus equipped with a variable-volume view cell. To observe the effect of the PEGDME molecular weight on the $CO_2$ solubility, the $CO_2$ solubilities in PEGDME with two kinds of molecular weight were compared. As the equilibrium pressure increased, the $CO_2$ solubility in PEGDME increased. On the other hand, the $CO_2$ solubility decreased with increasing temperature. When compared at the same temperature and pressure, the PEGDME with a higher molecular weight gave smaller $CO_2$ solubility on a mass fraction and molality basis, but gave greater $CO_2$ solubilities on a mole fraction basis.

Experimental analysis of the aerodynamic characteristics of a rectangular 5:1 cylinder using POD

  • Cardenas-Rondon, Juan A.;Ogueta-Gutierrez, Mikel;Franchini, Sebastian;Gomez-Ortega, Omar
    • Wind and Structures
    • /
    • v.34 no.1
    • /
    • pp.29-42
    • /
    • 2022
  • Following the BARC initiative, wind tunnel measurements have been performed on a 5:1 rectangular cylinder. Pressure distribution has been measured in several sections, checking the two-dimensionality of the flow around the model. Mean values compare well with previous data. These measurements have been processed using the standard Proper Orthogonal Decomposition (POD) and the snapshot POD to obtain phase-resolved cycles. This decomposition has been used to analyze the characteristics of the flow around the cylinder, in particular, the behavior of the recirculation bubble in the upper/lower surfaces. The effect of the angle of attack, the turbulence intensity and the Reynolds number has been studied. First and second modes extracted from POD have been found to be related to the reattachment of the flow in the upper surface. Increasing the angle of attack is related to a delay in the reattachment position, while an increase in turbulence intensity makes the reattachment point to move towards the windward face.

High-Pressure Solubility of Carbon Dioxide in 1-Butyl-3-methylpiperidinium Bis(trifluoromethylsulfonyl)imide Ionic Liquid (1-Butyl-3-methylpiperidinium Bis(trifluoromethylsulfonyl)imide 이온성 액체에 대한 이산화탄소의 고압 용해도)

  • Nam, Sang-Kyu;Lee, Byung-Chul
    • Analytical Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.79-91
    • /
    • 2014
  • Solubility data of carbon dioxide ($CO_2$) in 1-butyl-3-methylpiperidinium bis(trifluoromethylsulfonyl)imide ($[bmpip][Tf_2N]$) ionic liquid are presented at pressures up to about 30 MPa and at temperatures between 303 K and 343 K. As far as we know, the data on the $CO_2$ solubility in the $[bmpip][Tf_2N]$ ionic liquid have never been reported in the literature by other investigators. The solubilities of $CO_2$ were determined by measuring the bubble point or cloud point pressures of the $CO_2+[bmpip][Tf_2N]$ mixtures with various compositions using a high-pressure equilibrium apparatus equipped with a variable-volume view cell. To observe the effect of the cation composing the ionic liquid on the $CO_2$ solubility, the $CO_2$ solubilities in $[bmpip][Tf_2N]$ used in this study were compared with those in 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)-imide ($[bmim]Tf_2N]$). As the equilibrium pressure increased, the $CO_2$ solubility in $[bmpip][Tf_2N]$ increased sharply. On the other hand, the $CO_2$ solubility decreased with increasing temperature. The mole fraction-based $CO_2$ solubilities were almost the same for both $[bmpip][Tf_2N]$ and $[bmim][Tf_2N]$, regardless of temperature and pressure. The phase equilibrium data for the $CO_2+[bmpip][Tf_2N]$ systems have been correlated using the Peng-Robinson equation of state.

Development and Characterization of High Temperature Filter (내열성여과포의 개발 및 기초성능 규명)

  • 박영옥;구철오;임정환;김홍룡;손재익;이영우
    • Journal of Energy Engineering
    • /
    • v.7 no.1
    • /
    • pp.103-112
    • /
    • 1998
  • A high temperature fabric filter was developed and characterized in order to solve the various problems encountered in the operation of industrial fabric filters. Four kinds of dusts generated in the typical domestic industry were used for its characterization, coke dust from a steel manufacturing process, cement dust from a cement manufacturing process, fly ash from a fluidized-bed combustor, and incinerator ash from a waste plastics incinerator. The physical and chemical properties of the high temperature fabric filter were analyzed in terms of mean flow pore pressure, bubble point pore diameter, mean flow pore diameter, pore size distribution, and the changes in tensile strength and initial elastic modulus under $SO_2$ and $NO_2$ atmospheres. Pressure drop, dust penetration, and figure of merit for the fabric filter were also investigated in a bench-scale filter testing unit. The fabric filter developed in this study had good physical and chemical filter properties and showed a very applicability to typical industrial dusts treatments.

  • PDF

Evaluation of Membrane Damage Sensitivity by Defect Types for Improving Reliability of Membrane Integrity Monitoring (막 완결성 모니터링 신뢰성 향상을 위한 손상 유형별 막 손상 감도 평가)

  • Lee, Yong-Soo;Kang, Ha-Young;Kim, Hyung-Soo;Kim, Jong-Oh
    • Membrane Journal
    • /
    • v.27 no.3
    • /
    • pp.248-254
    • /
    • 2017
  • In order to secure the reliability of pathogenic microorganisms such as Cryptosporidium and Giaridia, which are chlorophilic protozoans, membrane filtration systems have been widely used in water purification process. hese integrity tests are classified into direct and indirect methods. Based on the bubble point theory, the pressure-based test in the direct method is presented in the USEPA Guidance Manual with sensitivity to detect a minimum size of pathogenic microorganisms of $3{\mu}m$ or more. Indirect methods are widely used in that they are capable of continuous operation in on-line state, but there is a very low sensitivity of damage detection compared to the direct method, and there is a limit that can not specify the damage area, so it is necessary to improve this sensitivity. In this study, we compared the LRVDIT and UCL values according to the type of membrane defect, number of fiber breaks, and initial set pressure value through the Integrity Test by Pressure Decay Test (PDT).

A STUDY ON THE FLOW CHARACTERISTICS OF AIR-KNIFE USING A CONSTANT EXPANSION RATE NOZZLE (팽창률이 일정한 노즐을 사용한 AIR-KNIFE 유동에 관한 연구)

  • Lee, Dong-Won;Kang, Nam-Cheol;Kim, Guen-Young;Kwon, Young-Doo;Kwon, Soon-Bum
    • Journal of computational fluids engineering
    • /
    • v.13 no.4
    • /
    • pp.1-7
    • /
    • 2008
  • In the process of continuous hot-dip galvanizing, it is well known that the gas wiping through an air knife system is most effective because of its uniformity in coating thickness, possibility of thin coating, workability in high speed, and simplicity of control. However, gas wiping used in the galvanizing process brings about a problem of splashing at the strip edge above a certain high speed of process. It is also known that the problem of edge splashing is more harmful than that at the mid strip surface. For a given liquid(of a certain viscosity and surface tension), the onset of splashing mainly depends upon the strip velocity, the gas-jet pressure, and the nozzle's stand-off distance. In these connections in the present study, we proposed three kinds of air knife system having nozzles of constant expansion rate, and compared the jet structures issuing from newly proposed nozzle systems with the result by a conventional one. In numerical analysis, the governing equations are consisted of two-dimensional time dependent Navier-Stokes equations, and the standard k-${\varepsilon}$ turbulence model is employed to solve turbulence stress and so on. As the result, it is found that we had better use the constant expansion-rate nozzle which can be interpreted from the point view of the energy saving for the same coating thickness. Also, we better reduce the size of separation bubble and enhance the cutting ability at the strip surface, by using an air-knife having constant expansion-rate nozzle.

Study of hydrodynamics and iodine removal by self-priming venturi scrubber

  • Jawaria Ahad;Talha Rizwan ;Amjad Farooq ;Khalid Waheed ;Masroor Ahmad ;Kamran Rasheed Qureshi ;Waseem Siddique ;Naseem Irfan
    • Nuclear Engineering and Technology
    • /
    • v.55 no.1
    • /
    • pp.169-179
    • /
    • 2023
  • Filtered containment system is a passive safety system that controls the over-pressurization of containment in case of a design-based accidents by venting high pressure gaseous mixture, consisting of air, steam and radioactive particulate and gases like iodine, via a scrubbing system. An indigenous lab scale facility was developed for research on iodine removal by venturi scrubber by simulating the accidental scenario. A mixture of 0.2 % sodium thiosulphate and 0.5 % sodium hydroxide, was used in scrubbing column. A modified mathematical model was presented for iodine removal in venturi scrubber. Improvement in model was made by addition of important parameters like jet penetration length, bubble rise velocity and gas holdup which were not considered previously. Experiments were performed by varying hydrodynamic parameters like liquid level height and gas flow rates to see their effect on removal efficiency of iodine. Gas holdup was also measured for various liquid level heights and gas flowrates. Removal efficiency increased with increase in liquid level height and gas flowrate up to an optimum point beyond that efficiency was decreased. Experimental results of removal efficiency were compared with the predicted results, and they were found to be in good agreement. Maximum removal efficiency of 99.8% was obtained.