Browse > Article
http://dx.doi.org/10.5806/AST.2014.27.2.79

High-Pressure Solubility of Carbon Dioxide in 1-Butyl-3-methylpiperidinium Bis(trifluoromethylsulfonyl)imide Ionic Liquid  

Nam, Sang-Kyu (Department of Chemical Engineering, Hannam University)
Lee, Byung-Chul (Department of Chemical Engineering, Hannam University)
Publication Information
Analytical Science and Technology / v.27, no.2, 2014 , pp. 79-91 More about this Journal
Abstract
Solubility data of carbon dioxide ($CO_2$) in 1-butyl-3-methylpiperidinium bis(trifluoromethylsulfonyl)imide ($[bmpip][Tf_2N]$) ionic liquid are presented at pressures up to about 30 MPa and at temperatures between 303 K and 343 K. As far as we know, the data on the $CO_2$ solubility in the $[bmpip][Tf_2N]$ ionic liquid have never been reported in the literature by other investigators. The solubilities of $CO_2$ were determined by measuring the bubble point or cloud point pressures of the $CO_2+[bmpip][Tf_2N]$ mixtures with various compositions using a high-pressure equilibrium apparatus equipped with a variable-volume view cell. To observe the effect of the cation composing the ionic liquid on the $CO_2$ solubility, the $CO_2$ solubilities in $[bmpip][Tf_2N]$ used in this study were compared with those in 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)-imide ($[bmim]Tf_2N]$). As the equilibrium pressure increased, the $CO_2$ solubility in $[bmpip][Tf_2N]$ increased sharply. On the other hand, the $CO_2$ solubility decreased with increasing temperature. The mole fraction-based $CO_2$ solubilities were almost the same for both $[bmpip][Tf_2N]$ and $[bmim][Tf_2N]$, regardless of temperature and pressure. The phase equilibrium data for the $CO_2+[bmpip][Tf_2N]$ systems have been correlated using the Peng-Robinson equation of state.
Keywords
ionic liquid; carbon dioxide; solubility; piperidinium; thermodynamic modeling; Peng-Robinson equation of state;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 A. L. Revelli, F. Mutelet and J. N. Jaubert, J. Phys. Chem. B, 114, 12908 (2010).   DOI   ScienceOn
2 E. K. Shin, B. C. Lee and J. S. Lim, J. Supercrit. Fluids, 45, 282-292 (2008).   DOI   ScienceOn
3 E. K. Shin and B. C. Lee, J. Chem. Eng. Data, 53, 2728-2734 (2008).   DOI   ScienceOn
4 J.-Y. Jung and B.-C. Lee, Analyt. Sci. Technol., 24(6), 467-476 (2011).   DOI   ScienceOn
5 S. G. Nam and B.-C. Lee, Korean J. Chem. Eng., 30(2), 474-481 (2013).   DOI   ScienceOn
6 R. Macias-Salinas, J. A. Chavez-Velasco, M. A. Aquino-Olivos, J. L. Mendoza de la Cruz and J. C. Sanchez- Ochoa, Ind. Eng. Chem. Res., 52, 7593-7601 (2013).   DOI   ScienceOn
7 P. J. Carvalho and A. P. Coutinho, J. Phys. Chem. Lett., 1, 774 (2010).   DOI   ScienceOn
8 M. Yazdizadeh, F. Rahmani and A. A. Forghani, Korean J. Chem. Eng., 28(1), 246-251 (2011).   DOI   ScienceOn
9 A. Shariati and C. J. Peters, J. Supercrit. Fluids, 25, 109 (2003).   DOI   ScienceOn
10 F. M. Maia, I. Tsivintzelis, O. Rodriguez, E. A. Macedo and G. M. Kontogeorgis, Fluid Phase Equilib., 332, 128 (2012).   DOI
11 X. Ji and H. Adidharma, Fluid Phase Equilib., 293, 141 (2010).   DOI   ScienceOn
12 L. F. Vega, O. Vilaseca, F. Llovell and J. S. Andreu, Fluid Phase Equilib., 294, 15 (2010).   DOI   ScienceOn
13 Guide to the Expression of Uncertainty in Measurement, International Organization of Standardization (ISO), Geneva, Switzerland (1995).
14 J. M. Prausnitz, R. N. Lichtenthaler and E. G. de Azevedo, Molecular Thermodynamics of Fluid-Phase Equilibria, 3rd ed., Prentice-Hall, NJ, 1999.
15 Winnick, J., Chemical Engineering Thermodynamics, John Wiley & Sons, New York, NY, 1997, pp. 451-463.
16 IMSL Math/Library: Fortran Subroutines for Mathematical Applications, Vol. 2, Visual Numerics, Inc., 1994.
17 H. Zhao, Chem. Eng. Commun., 193, 1660 (2006).   DOI   ScienceOn
18 M. Ramdin, T. W. de Loos and T. J. H. Vlugt, Ind. Eng. Chem. Res., 51, 8149-8177 (2012).   DOI   ScienceOn
19 R. S. Haszeldine, Science, 325, 1647-1651 (2009).   DOI   ScienceOn
20 G. T. Rochelle, Science, 325, 1652-1654 (2009).   DOI   ScienceOn
21 J. E. Bara, T. K. Carlisle, C. J. Gabriel, D. Camper, A. Finotello, D. L. Gin and R. D. Noble, Ind. Eng. Chem. Res., 48, 2739 (2009).   DOI   ScienceOn
22 M. Hasib-ur-Rahman, M. Siaj and F. Larachi, Chem. Eng. Processing, 49, 313-322 (2010).   DOI   ScienceOn
23 J. Jacquemin, P. Husson, V. Majer and M. F. Costa- Gomes, J. Solution Chem., 36, 967 (2007).   DOI   ScienceOn
24 F. Karadas, M. Atilhan and S. Aparicio, Energy Fuels, 24, 5817-5828 (2010).   DOI   ScienceOn
25 J. L. Anthony, J. L. Anderson, E. J. Maginn and J. F. Brennecke, J. Phys. Chem. B, 109, 6366 (2005).   DOI   ScienceOn
26 P. J. Carvalho, V. H. Alvarez, J. J. B. Machado, J. Pauly, J. L. Daridon, I. M. Marrucho, M. Aznar and J. A. P. Coutinho, J. Supercrit. Fluids, 48, 99 (2009).   DOI   ScienceOn
27 W. Ren, B. Sensenich and A. M. Scurto, J. Chem. Thermodyn., 42, 305 (2010).   DOI   ScienceOn
28 M. J. Muldoon, S. N. V. K. Aki, J. L. Anderson, J. K. Dixon and J. F. Brennecke, J. Phys. Chem. B, 111, 9001-9009 (2007).   DOI   ScienceOn
29 A. L Revelli, F. Mutelet and J. N. Jaubert, J. Phys. Chem. B, 114, 4600 (2010).   DOI   ScienceOn
30 Z. Lei, C. Dai and B. Chen, Chem. Rev., 114, 1289-1326 (2014).   DOI   ScienceOn
31 M. R. Ally, J. Braunstein, R. E. Baltus, S. Dai, D. W. DePaoli and J. M. Simonson, Ind. Eng. Chem. Res., 43, 1296 (2004).   DOI   ScienceOn
32 J. O. Valderrama, L. A. Forero and R. E. Rojas, Ind. Eng. Chem. Res., 51, 7838-7844 (2012).   DOI   ScienceOn
33 P. Scovazzo, D. Camper, J. Kieft, J. Poshusta, C. Koval and R. Noble, Ind. Eng. Chem. Res., 43, 6855 (2004).   DOI   ScienceOn
34 K. Kedra-Krolik, F. Mutelet and J. N. Jaubert, Ind. Eng. Chem. Res., 50, 2296 (2011).   DOI   ScienceOn
35 Y.-H. Jung, J.-Y. Jung, Y.-R. Jin, B.-C. Lee and I.-H. Baek, J. Chem. Eng. Data, 57, 3321-3329 (2012).   DOI   ScienceOn