Browse > Article
http://dx.doi.org/10.5806/AST.2011.24.6.467

Solubility of carbon dioxide in ionic liquids with methylsulfate anion  

Jung, Jun-Young (Department of Chemical Engineering and Nano-Bio Technology, Hannam University)
Lee, Byung-Chul (Department of Chemical Engineering and Nano-Bio Technology, Hannam University)
Publication Information
Analytical Science and Technology / v.24, no.6, 2011 , pp. 467-476 More about this Journal
Abstract
Solubility data of carbon dioxide ($CO_2$) in the imidazolium-based ionic liquids with methylsulfate anion are presented at pressures up to about 45 MPa and at temperatures between 303.15 K and 343.15 K. The ionic liquids studied in this work were 1-ethyl-3-methylimidazolium methylsulfate ([emim][$mSO_4$]), 1-butyl-3-methylimidazolium methylsulfate ([bmim][$mSO_4$]). The solubilities of $CO_2$ were determined by measuring the bubble point or cloud point pressures of the binary mixtures using a high-pressure equilibrium apparatus equipped with a variable-volume view cell. The equilibrium pressure increased very steeply at high $CO_2$ compositions. The $CO_2$ solubility in ionic liquids increased with increase of the total length of alkyl chains attached to the imidazolium cation of the ionic liquids. The phase equilibrium data for the $CO_2$ + ionic liquid systems have been correlated using the Peng-Robinson equation of state.
Keywords
ionic liquid; carbon dioxide; solubility; imidazolium; methylsulfate; Peng-Robinson equation of state;
Citations & Related Records
연도 인용수 순위
  • Reference
1 E. K. Shin and B. C. Lee, J. Chem. Eng. Data, 53, 2728-2734 (2008).   DOI   ScienceOn
2 J. M. Prausnitz, R. N. Lichtenthaler and E. G. de Azevedo, 'Molecular Thermodynamics of Fluid-Phase Equilibria', 3rd ed., Prentice-Hall, NJ, 1999.
3 J. O. Valderrama and R. E. Rojas, Ind. Eng. Chem. Res., 48, 6890-6900 (2009).   DOI   ScienceOn
4 J. Winnick, Chemical Engineering Thermodynamics, John Wiley & Sons, New York, NY, 1997, pp. 451-463.
5 IMSL Math/Library: Fortran Subroutines for Mathematical Applications, Vol. 2, Visual Numerics, Inc., 1994.
6 X. Zhang, Z. Liu and W. Wang, AIChE J., 54, 2717- 2728 (2008).   DOI   ScienceOn
7 S. N. V. K. Aki, B. R. Mellein, E. M. Saurer and J. F. Brennecke, J. Phys. Chem. B., 108, 20355-20365 (2004).   DOI   ScienceOn
8 C. Cadena, J. L. Anthony, J. K. Shah, T. I. Morrow, J. F. Brennecke and E. J. Maginn, J. Am. Chem. Soc., 126, 5300-5308 (2004).   DOI   ScienceOn
9 M. J. Muldoon, S. N. V. K. Aki, J. L. Anderson, J. K. Dixon and J. F. Brennecke, J. Phys. Chem. B., 111, 9001-9009 (2007).   DOI   ScienceOn
10 X. Yuan, S. Zhang, J. Liu and X. Lu, Fluid Phase Equilib., 257, 195-200 (2007).   DOI   ScienceOn
11 J. Tang, H. Tang, W. Sun, M. Radosz and Y. Shen, J. Polym. Sci. Part A: Poly. Chem., 43, 5477-5489 (2005).   DOI   ScienceOn
12 K. R. Seddon, A. Stark and M. S. Torres, Pure Appl. Chem., 72(12), 2275-2287 (2000).   DOI   ScienceOn
13 W. Li, Z. Zhang, B. Han, S. Hu, J. Song, Y. Xie and X. Zhou, Green Chem., 10, 1142-1145 (2008).   DOI   ScienceOn
14 E. K. Shin, B. C. Lee and J. S. Lim, J. Supercrit. Fluids, 45, 282-292 (2008).   DOI   ScienceOn