• Title/Summary/Keyword: broad band amplifier

Search Result 20, Processing Time 0.025 seconds

Control of Hydroxyl Group Content in Sol-Gel-Derived Sols for Waveguide Optical Matrix (Waveguide Optical Matrix 용 졸-겔 코팅졸의 OH 함량 제어)

  • 안복엽;석상일;김주현;권정오
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.55-55
    • /
    • 2003
  • Recently, with the rapid development of the waveguide division multiplexing (WDM) systems for large capacity and flexibility of information network, the broad band 1.5$\mu\textrm{m}$ erbium-doped waveguide amplifier (EDWA) become important. The main factors affecting the performance of sol-gel-based waveguides are non-radiative relaxation channels due to rare-earth concentration quenching and to vibration of the OH groups Therefore, the sol-gel process has to be carefully controlled in order to minimize the residual OH content.

  • PDF

Design of the Broad-Band Low Noise Amplifier Using the Active Matching (능동 정합을 이용한 광대역 저잡음 증폭기 설계)

  • 배성호;권태운;최재하
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2000.11a
    • /
    • pp.183-186
    • /
    • 2000
  • 본 논문에서는 잡음에 적합한 능동 정합 회로를 구성하여 기존의 보상 정합 회로와 궤환 회로를 적용함으로써 L. S 밴드(1-4GHz) 내에서 균일한 이득 특성과 작은 반사 손실을 갖는 광대역 저잡음 증폭기를 설계하였다. 설계된 중폭기는 대역 내에서 14.25-14.96dB의 소신호 이득과 1.41, 1.28 이하의 입, 출력 정재파비를 갖는다.

  • PDF

The Design of K-band Up converter with the Excellent IMD3 Performance (3차 혼변조 왜곡 특성이 우수한 K-band 상향변환기 설계)

  • 정인기;이영철
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.5
    • /
    • pp.1120-1128
    • /
    • 2004
  • In this paper, we has designed and implemented Up-converter for K-band with high IMD3 performance using balanced power amplifier. It is consisted of PA module and, Local Oscillator module with reject Filter, mixer module and If block, and Up-converter has a local loop path to decide whether it operate or not and has the sensing port to inspect output power level. According to the power budget of designed Up-converter, K-band balanced power amplifier was fabricated by commercial MMIC. Measurement results of up-converter show about 40dB Gain, PldB of 29dBm and OIP3 was 38.25dBm, that is good performance compared to power budgets. We has adjusted gate voltage of MMIC to control more than 30 dB gain. This up-converter was used in transceiver for PTP and PTMP, and applied to digital communication system that use QAM and QPSK modulation.

Design of a Microwave Bias-Tee Using Lumped Elements with a Wideband Characteristic for a High Power Amplifier (광대역 특성을 갖는 집중 소자를 이용한 고출력 증폭기용 마이크로파 바이어스-티의 설계)

  • Oh, Hyun-Seok;Jeong, Hae-Chang;Yeom, Kyung-Whan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.7
    • /
    • pp.683-693
    • /
    • 2011
  • In this paper, a design of high current and broad-band microwave bias-tee was presented for a stable bias of a high power amplifier. An input impedance of bias-tee should be shown to 50 ohm with the wideband in order to be stably-biased the amplifier. For this design of the bias-tee, a capacitor of bias-tee for a DC block was designed with a high wide-band admittance by a parallel sum of capacitors, and a inductor for a RF choke and a DC feeding was designed with a high wide-band impedance by a series sum of inductors. As this inductor and capacitor for the sum has each SRF, band-limitation of lumped element was driven from SRF. This limitation was overcome by control of a resonance's quality factor with adding a resistor. 1608 SMD chips for design's element was mounted on the this pattern for the designed bias-tee. The fabricated bias-tee presented 10 dB of return loss and wide-band about 50 ohm input impedance at 10 MHz~10 GHz.

RF Receiver design for Satellite Digital Audio Reception (Antenna)

  • Kim, Jang-Wook;Jeon, Joo-Seong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.7
    • /
    • pp.71-78
    • /
    • 2019
  • This paper describes a design for a RF receiver to receive satellite digital audio service. The RF receiver designed in this study is a planar structure that is easy to install on the rooftop of a car and is compact in size. In addition, it can be applied to certain commercial models because it has low noise and high gain characteristics. The impedance bandwidth of antenna is 17.8%(415MHz), and the axial ratio is below 3dB as good properties for the bandwidth of 40MHz which is a satellite digital audio service band. Also, it had a broad radiation beamwidth of $95.41^{\circ}$ in H-plane and $117.45^{\circ}$ in E-plane. From the results of the field test of satellite digital audio service reception for the RF receiver, it demonstrated good C/N rate(10.2dB).

A 3 Stage MMIC Low Noise Amplifier for the Ka Band Satellite Communications and BWLL System (Ka 대역 위성통신 및 BWLL 시스템용 3단 MMIC 저잡음 증폭기 설계 및 제작)

  • 염인복;정진철;이성팔
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.1
    • /
    • pp.71-76
    • /
    • 2001
  • A Ka Band 3-stage MMIC (Monolithic Microwave Integrated Circuits) LNA (Low Noise Amplifiers) has been designed and fabricated far the Ka band satellite communications and BWLL(Broad Band Wireless Local Loop)system. The MMIC LNA consists of two single-ended type amplification stages and one balanced type amplification stage to satisfy noise figure, high gain and amplitude linearity. The 0.15${\mu}{\textrm}{m}$ pHEMT has been used to provide a ultra low noise figure and high gain amplification. Series and Shunt feedback circuits and λ/4 short lines were inserted to ensure high stability over the frequency range form DC to 80 GHz. The size of the MMIC LNA is 3.1mm$\times$2.4mm(7.44mm$^2$). The on wafer measured performance of the MMIC LNA, which agreed with the designed performance, showed the noise figure of less than 2.0 dB, and the gain of more than 26 dB, over frequency ranges from 22 GHz to 30 GHz.

  • PDF

Broadband LTCC Receiver Module for Fixed Communication in 40 GHz Band (40 GHz 대역 고정통신용 광대역 LTCC 수신기 모듈)

  • Kim Bong-Su;Kim Kwang-Seon;Eun Ki-Chan;Byun Woo-Jin;Song Myung-Sun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.10 s.101
    • /
    • pp.1050-1058
    • /
    • 2005
  • This paper presents how to design and implement a very compact, cost effective and broad band receiver module for IEEE 802.16 FWA(Fixed Wireless Access) in the 40 GHz band. The presented receiver module is fabricated in a multi-layer LTCC(Low Temperature Cofired Ceramic) technology with cavity process to achieve excellent electrical performances. The receiver consists of two MMICs, low noise amplifier and sub-harmonic mixer, an embedded image rejection filter and an IF amplifier. CB-CPW, stripline, several bond wires and various transitions to connect each element are optimally designed to keep transmission loss low and module compact in size. The LTCC is composed of 6 layers of Dupont DP-943 with relative permittivity of 7.1. The thickness of each layer is 100 um. The implemented module is $20{\times}7.5{\times}1.5\;mm^3$ in size and shows an overall noise figure of 4.8 dB, an overall down conversion gain of 19.83 dB, input P1 dB of -22.8 dBm and image rejection value of 36.6 dBc. Furthermore, experimental results demonstrate that the receiver module is suitable for detection of Digital TV signal transmitted after up-conversion of $560\~590\;MHz$ band to 40 GHz.

Study on the Development of Linearity of Broad-Band SDLVA Using Clamping Op-Amp (Clamping Op-Amp를 이용한 광대역 로그 비디오 증폭기의 선형성 개선에 관한 연구)

  • Park, Jong-Sul;Kim, Jong-Geon;Kim, Jum-Sik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.6
    • /
    • pp.641-647
    • /
    • 2011
  • This paper describes a design and fabrication of SDLVA. The SDLVA operates 0.5~2.0 GHz with -70~0 dBm dynamic range. The SDLVA is consisted of 5-stage RF block, 2-stage detector block and summation circuit using clamping op-amp to improve video linearity. The result of measure, SDLVA of RF path has over 73 dB small-signal gain and 10.1~12.2 dBm saturation power. The video path has 25 mV/ dB${\pm}$1.0 mV and under ${\pm}$1.5 dB video linearity.

Cognitive radio technology to coexist with UWB terminal and satellite communication systems (UWB터미널과 위성통신수신기의 상호공존을 위한 CR 기술의 적용)

  • Kim, Yun-Bong;Son, Seong-Hwan;Kim, Jae-Myeong
    • Journal of Satellite, Information and Communications
    • /
    • v.2 no.1
    • /
    • pp.56-62
    • /
    • 2007
  • UWB(Ultra Wide Band) system can transmits information with low power but it can achieve high transmission rate using broad frequency bands. Using CR(Cognitive Radio) technology, we can use and share frequency efficiently without interfere to satellite communication system. However, passive characteristics of satellite receiver makes it hard to implement. This paper propose additional structure of satellite receiver which add amplifier and antenna to local oscillator. Proposing structure emits satellite receiver's local oscillator signal and UWB terminal detects it by energy detection. We can find out the possibility of co-existence of UWB system and satellite communication system through the simulation result.

  • PDF

Power Factor Compensation for Wideband Acoustic Projector Using Measurement Data and ABCD matrix (ABCD 전송 파라메터를 사용한 광대역 음향 발신기의 역률 개선 연구)

  • Lim, Jun-Seok;Pyeon, Yong-Guk
    • 전자공학회논문지 IE
    • /
    • v.48 no.3
    • /
    • pp.10-15
    • /
    • 2011
  • In the case of designing an acoustic transducer for high power application, we usually aim to transfer the source electric energy to the output acoustic energy as large as possible. For this purpose, we should match the impedance of the power amplifier to the impedance combined with the acoustic transducer impedance and the radiation impedance. Especially if we have electrical source with almost zero impedance, we need improve the power factor of the acoustic transducer in the load. In this paper, we propose a broad band impedance matching method by the improvement of power factor, which applies ABCD matrix.