• Title/Summary/Keyword: bridge monitoring system

Search Result 389, Processing Time 0.024 seconds

The Technology Applied 3 Liter House, Super Energy Saving Building (3L House의 설계, 시공 및 평가)

  • Park, Sun-Hyo;Park, Yong-Seung;Won, Jong-Seo
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.814-819
    • /
    • 2006
  • This research is on the design and introducing of integrated thermal performance of super energy saying building, called 3 Liter house which can be sustained with 3 liter oil(kerosene) per $yr.m^2$. 3 liter houses(Passive houses) offer extended living comfort with only 15 to 20% of the space heating demand of conventional new building. To achieve this purpose, the efficiency of building components is improved, such as walls, windows or ventilation system and the construction technology is improved, such as the prevention of thermal bridge and the air tightness. The fuel cell is used as alternative energy. Energy consumption of 3L house is 2.08 [liter/$yr.m^2$] in monitoring result of $2006/2/1{\sim}2/7$ and ACH50 is 0.67 in result of Blow Door Test, therefore 3L House is well- insulated and well- airtighted house.

  • PDF

AI-based Bridge Safety Monitoring System Model (AI 기반의 교량 안전 모니터링 시스템 모델)

  • Yeong-Hwi Ahn;Hyoung-Min Ham;Jong-Su Park;Dong-Hyun Kim
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.07a
    • /
    • pp.107-108
    • /
    • 2023
  • 본 논문에서는 교량의 변위를 IoT 장치를 이용하여 실시간 측정하고 추출된 데이터를 이용하여 교량의 이상징후를 AI 기반으로 진단 및 모니터링 하는 방법을 제안한다. AI 모델 학습 학습을 위해서 비정상 상태의 교량이 필요하지만, 실제 교량에 인위적으로 비정상 상태를 만들 수 없으므로, 탄성 받침을 이용하여 모의 교량을 제작하였다. 탄성 받침을 이용하여 제작에 반영 및 모의교량에 적합한 모의 차량도 제작하여 정상적 데이터와 비정상적 데이터를 수집하였다. 수집된 데이터를 전처리 과정을 통해 AI 분석을 통해 교량의 이상 징후를 진단 및 모니터링하였으며, 제안 모델을 실험한 결과 96.7%의 정확도가 도출되었다.

  • PDF

Effect of Support Rotational Stiffness on Tension Estimation of Short Hanger Ropes in Suspension Bridges (현수교 짧은 행어로프의 장력추정시 지점부 회전강성의 영향)

  • Lee, Jungwhee;Ro, Sang-Kon;Lee, Young-Dai;Kang, Byung-Chan
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.10
    • /
    • pp.869-877
    • /
    • 2013
  • Tension force of hanger ropes has been recognized and utilized as an important parameter for health monitoring of suspension bridges. Conventional vibration method based on string theory has been utilized to estimate tension forces of relatively long hanger ropes without any problem, however it is convinced that the vibration method is not applicable for shorter hanger ropes in which the influence of flexural stiffness is not ignorable. Therefore, as an alternative of vibration method, a number of feasibility studies of system identification(SI) technique considering flexural stiffness of the hanger ropes are recently performed. In this study, the influence of support condition of the finite element model utilized for the SI method is investigated with numerical examples. The numerical examples are prepared with the specification of the Kwang-Ahn bridge hanger ropes, and it is revealed that the estimation result of the tension force can be varied from -21.6 % to +35.3 % of the exact value according to the consideration of the support condition of FE model. Therefore, it is concluded that the rotational stiffness of the support spring should be included to the list of the identification parameters of the FE model to improve the result of tension estimation.

An Instantaneous Integer Ambiguity Resolution for GPS Real-Time Structure Monitoring (GPS 실시간 구조물 모니터링을 위한 반송파 관측데이터 순간미지정수 결정)

  • Lee, Hungkyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.1
    • /
    • pp.341-353
    • /
    • 2014
  • In order to deliver a centimeter-level kinematic positioning solution with GPS carrier-phase measurements, it is prerequisite to use correctly resolved integer ambiguities. Based on the mathematical modeling of GPS network with application of its geometrical constraints, this research has investigated an instantaneous ambiguity resolution procedure for the so-called 'integer constrained least-squares' technique which can be effectively implemented in real-time structure monitoring. In this process, algorithms of quality control for the float solutions and hypothesis tests using the constrained baseline for the ambiguity validation are included to enhance reliability of the solutions. The proposed procedure has been implemented by MATLAB, the language of technical computing, and processed field trial data obtained at a cable-stayed bridge to access its real-world applicability. The results are summarized in terms of ambiguity successful rates, impact of the stochastical models, and computation time to demonstrate performance of the instantaneous ambiguity resolution proposed.

A strain-based wire breakage identification algorithm for unbonded PT tendons

  • Abdullah, A.B.M.;Rice, Jennifer A.;Hamilton, H.R.
    • Smart Structures and Systems
    • /
    • v.16 no.3
    • /
    • pp.415-433
    • /
    • 2015
  • Tendon failures in bonded post-tensioned bridges over the last two decades have motivated ongoing investigations on various aspects of unbonded tendons and their monitoring methods. Recent research shows that change of strain distribution in anchor heads can be useful in detecting wire breakage in unbonded construction. Based on this strain variation, this paper develops a damage detection model that enables an automated tendon monitoring system to identify and locate wire breaks. The first part of this paper presents an experimental program conducted to study the strain variation in anchor heads by generating wire breaks using a mechanical device. The program comprised three sets of tests with fully populated 19-strand anchor head and evaluated the levels of strain variation with number of wire breaks in different strands. The sensitivity of strain variation with wire breaks in circumferential and radial directions of anchor head in addition to the axial direction (parallel to the strand) were investigated and the measured axial strains were found to be the most sensitive. The second part of the paper focuses on formulating the wire breakage detection framework. A finite element model of the anchorage assembly was created to demonstrate the algorithm as well as to investigate the asymmetric strain distribution observed in experimental results. In addition, as almost inevitably encountered during tendon stressing, the effects of differential wedge seating on the proposed model have been analyzed. A sensitivity analysis has been performed at the end to assess the robustness of the model with random measurement errors.

Effects of new construction technology on performance of ultralong steel sheet pile cofferdams under tidal action

  • Li, Ping;Sun, Xinfei;Chen, Junjun;Shi, Jiangwei
    • Geomechanics and Engineering
    • /
    • v.27 no.6
    • /
    • pp.561-571
    • /
    • 2021
  • Cofferdams made of teel sheet piles are commonly utilized as support structures for excavation of sea-crossing bridge foundations. As cofferdams are often subject to tide variation, it is imperative to consider potential effects of tide on stability and serviceability of sheet piles, particularly, ultralong steel sheet piles (USSPs). In this study, a real USSP cofferdam constructed using new construction technology in Nanxi River was reported. The design of key parts of USSP cofferdam in the presence of tidal action was first introduced followed by the description of entire construction technology and associated monitoring results. Subsequently, a three-dimensional finite-element model corresponding to all construction steps was established to back-analyze measured deflection of USSPs. Finally, a series of parametric studies was carried out to investigate effects of tide level, soil parameters, support stiffness and construction sequence on lateral deflection of USSPs. Monitoring results indicate that the maximum deflection during construction occurred near the riverbed. In addition, measured stress of USSPs showed that stability of USSP cofferdam strengthened as construction stages proceeded. Moreover, the numerical back-analysis demonstrated that the USSP cofferdam fulfilled the safety requirements for construction under tidal action. The maximum deflection of USSPs subject to high tide was only 13.57 mm at a depth of -4 m. Sensitivity analyses results showed that the design of USSP cofferdam system must be further improved for construction in cohesionless soils. Furthermore, the 5th strut level before concreting played an indispensable role in controlling lateral deflection of USSPs. It was also observed that pumping out water before concreting base slab could greatly simplify and benefit construction program. On the other hand, the simplification in construction procedures could induce seepage inside the cofferdam, which additionally increased the deflection of USSPs by 10 mm on average.

Development of the Power Monitoring System for the Planetary Geared Motor using Hall Effect Sensor (홀 이펙트 센서를 이용한 유성기어 감속기모터의 동력 모니터링 시스템 개발)

  • Jang, In-Hun;Sim, Kwee-Bo;Oh, Se-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.7
    • /
    • pp.914-919
    • /
    • 2004
  • When the motor is rotating, the torque and rpm are varying as the loads or the driving status connecting through reduction units are changing. On the contrary, one can monitor the changes of the loads or the driving status in the manner of measuring motor torque and rpm. There is a torque measuring method using the strain gauge and bridge circuit. But, because this is the contact method, it has the life time which is dependent on rotating velocity and used time. So this system demands on replacement of some Parts or whole system itself for maintenance. And this system is also relatively big and expensive, requiring preceding annoying process. In this paper, we are going to suppose non-contact method to measure torque and rpm using the Hall effects sensor For this we have made the planetary geared reduction motor with Hall sensors and with the monitoring system. The monitoring system displays the sensing data(torque, rpm) and calculated data( power) and also has the network capability with Bluetooth protocol. Our solution is much more inexpensive ;md simple method to measure torque and rpm than before.

The Implementation of BNWAS Based on TLC Using USN (USN을 활용한 TLC 기반의 BNWAS 구축)

  • Hong, Sung-Hwa;Yang, Seong-Ryul;Lee, Seong-Real
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.2
    • /
    • pp.128-133
    • /
    • 2014
  • This paper is the study of BNWAS based on TLC. The functionality of BNWAS and its operations are investigated through its international standard. But the BNWAS to be used currently in the ship have difficulty in monitoring. Several kinds of data are generated from many equipments in BNWAS, such as NMEA-0183 data or NMEA-2000. Although these data are mainly used for the safe navigation of ship, their usability may be enhanced if they are managed to control the BNWAS equipment with sensors. The purpose of this system is prevent the marine accidents on sailing voyages due to drowsiness of watchers. On Night sailing, watcher is collected the navigation information from multiple devices and he determines the safe operation of the ship through continuous monitoring.

Optimal sensor placement under uncertainties using a nondirective movement glowworm swarm optimization algorithm

  • Zhou, Guang-Dong;Yi, Ting-Hua;Zhang, Huan;Li, Hong-Nan
    • Smart Structures and Systems
    • /
    • v.16 no.2
    • /
    • pp.243-262
    • /
    • 2015
  • Optimal sensor placement (OSP) is a critical issue in construction and implementation of a sophisticated structural health monitoring (SHM) system. The uncertainties in the identified structural parameters based on the measured data may dramatically reduce the reliability of the condition evaluation results. In this paper, the information entropy, which provides an uncertainty metric for the identified structural parameters, is adopted as the performance measure for a sensor configuration, and the OSP problem is formulated as the multi-objective optimization problem of extracting the Pareto optimal sensor configurations that simultaneously minimize the appropriately defined information entropy indices. The nondirective movement glowworm swarm optimization (NMGSO) algorithm (based on the basic glowworm swarm optimization (GSO) algorithm) is proposed for identifying the effective Pareto optimal sensor configurations. The one-dimensional binary coding system is introduced to code the glowworms instead of the real vector coding method. The Hamming distance is employed to describe the divergence of different glowworms. The luciferin level of the glowworm is defined as a function of the rank value (RV) and the crowding distance (CD), which are deduced by non-dominated sorting. In addition, nondirective movement is developed to relocate the glowworms. A numerical simulation of a long-span suspension bridge is performed to demonstrate the effectiveness of the NMGSO algorithm. The results indicate that the NMGSO algorithm is capable of capturing the Pareto optimal sensor configurations with high accuracy and efficiency.

A Study on the Ship's Performance of T.S. HANBADA(I) -The Evaluation of Seakeeping Performance by HMS Measuring Data- (실습선 한바다호의 운항성능에 관한 연구(I) -선체감시장치(HMS) 계측 데이터를 이용한 내항성능 평가-)

  • Jung, Chang-Hyun;Lee, Hyong-Ki;Lee, Yun-Sok
    • Journal of Navigation and Port Research
    • /
    • v.31 no.10
    • /
    • pp.905-910
    • /
    • 2007
  • As the ship is getting bigger and faster lately, ship's structure or cargoes might be often damaged and the ship might be cut in two in extreme conditions by a wave impact on its bow. In this paper, the vertical acceleration, which is one of factors for evaluating seakeeping performance, was measured under the various sea states by the hull stress monitoring system(HMS) on the bridge, and the result was compared with those of model test and theoretical studies. Then, we confirmed the seakeeping performance of T.S. HANBADA by comparing it with ITTC seakeeping criteria This result will be a great help for the safe navigation by making it possible to estimate the possibility of work and the amount of risk under the various sea conditions with which may be confronted, and the shipbuilding yard can be possible to construct the vessel with superior performance through these data measured on the actual ship.