• Title/Summary/Keyword: bridge girder

Search Result 1,303, Processing Time 0.023 seconds

Joint Displacement Resistance Evaluation of Waterproofing Material in Railroad Bridge Deck (철도교량상판 방수재료 선정을 위한 균열거동저항 성능평가)

  • Bae, Young-Min;Oh, Dong-Cheon;Park, Yong-Gul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.683-692
    • /
    • 2020
  • A joint displacement resistance evaluation method for selecting waterproofing materials in railway bridge decks is proposed. The displacement range for an evaluation is determined by finite element method (FEM) analysis of a load case based on an existing high-speed PSC Girder Box railroad bridge structure. The FEM analysis results were used to calculate the minimum joint displacement range to be applied during testing (approximately 1.5 mm). For the evaluation, four commonly used waterproofing membrane types, cementitious slurry coating (CSC), polyurethane coating system (PCS), self-adhesive asphalt sheet (SAS), and composite asphalt sheet (CAS), were tested, with five specimens of each membrane type. The joint displacement width range conditions, including the minimum displacement range obtained from FEM analysis, were set to be the incrementing interval, from 1.5, 3.0, 4.5, and 6.0 mm. The proposal for the evaluation criteria and the specimen test results demonstrated how the evaluation method is important for the sustainability of high-speed railway bridges.

A Study on Analysis of Real Response of Steel Railway Bridges (강철도교의 실응답해석에 관한 연구)

  • Chang, Dong Il;Choi, Kang Hee;Lee, Hee Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.9 no.2
    • /
    • pp.43-54
    • /
    • 1989
  • In this paper, measured and calculated responses are compared in order to give how the static and dynamic responses occurred in steel railway bridges due to train loads could be calculated appropriately. From this, it is investigated how the impact factors are varied by changing the train speed above 100km/h Field measurement is carried out by the steel strain gages and displacement transducers at the main design points, and then the static and dynamic response, fundamental frequencies, damping ratios and impact factors of the bridges are obtained. Static analysis is done using the computer program developed according to three dimensional matrix structural analysis in which the trains and bridges are modelled as 1,2 and 3 dimensions. Dynamic analysis is done according to 2 approaches, the moving force and mass problem. In moving force problem, the solutions are obtained by the modesuperposition-method and in moving mass problem by the direct integration method. From this study, it is known that in order to obtain the static response in the railway bridges, the bridge could be modelled by 1 or 2 dimension as in the highway bridge, however the response ratio(measured/calculaled) is high comparing to the highway bridges. By the way, the dynamic response should be obtained by the moving mass problem. And by comparing the measured and code specified impact factors, it is known that the factors specified in the present railway bridge code are very safe under the present service speed below 100km/h. However, because the factors become very high under the speed above 100km/h, especially in the simple plate girder bridge, it is thought that the code specification on impact factor should be discussed enough under the rapid transit system.

  • PDF

Performance Improvement of Overpass Bridge by Weight Reduction (고가교 경량화에 따른 성능개선)

  • Kim, Sung Bae;Nam, Sang Hyeok;Kim, Jang-Ho Jay
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.2
    • /
    • pp.51-60
    • /
    • 2011
  • In this study, structural safety capacity analysis of the overpass railway bridge between Konkuk Univ. and Guui station railroad has been performed. The overpass is expected to have suffered durability reduction by deterioration. The weight reduction of the overpass has been implemented to prevent further durability reduction and to improve performance capacity. To reduce the weight, 3 procedures of replacing concrete soundproofing wall to light-weight soundproofing wall, replacing gravel ballast to concrete ballast, and reducing the weight of trough have been performed. The analysis of static/dynamic behaviors and improved capacity of the light-weighted overpass bridge has been performed. The structural safety verification of the improved structure has been implemented by using rating factors of load carrying capacity of PSC I girder. The results have shown that the deflection has been reduced by 2.6mm and tensile strength has been improved by 1.07MPa, which indicate that the structural capacity has effectively been improved. Also, the natural frequency has improved by approximately 30% where vibration reduction and dynamic behavior improvement have been achieved. Moreover, in the rating factor evaluation based on analysis and test results, an improvement from 1.82 to 1.93 has been observed. Therefore, weight reduction method for the overpass is effective considering overall results.

Estimation of Design Wind Speed Compatible for Long-span Bridge in Western and Southern Sea (서남해안 장대교량에 적합한 설계 풍속 산정)

  • Kim, Han Soo;Lee, Hyun Ho;Cho, Doo Young;Park, Sun Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.2
    • /
    • pp.153-160
    • /
    • 2011
  • Recently there are many long span cable supported bridges like Cable Stayed Bridge and Suspension Bridge already constructed or planned. Reconsidering of proper design wind load of long span bridge is required since the meteorological value based on the data only from 1960s to 1995 has been used when we estimate the wind load for designing long span bridges. In this paper, the research area was confined to western and southern coasts where many long span bridges have constructed. The method of moment and the least-squares method were used to estimate the expected wind speeds of 100 year's return period for girder bridges and for 200 year's return period for long span bridges based on the Gumbel's distribution. As the return-period wind speed on the land face was revised because of recent high speed velocity, the revised return-period wind speed is increased by 17%. Compatibility of return-period wind speed was also evaluated using RMS (Root Mean Square) error method. Aa a result of this paper, the least-squares method is more compatible than the method of moment in the case of western and southern coasts in Korea.

Evaluation of Uplift Forces Acting on Fastening Systems at the Bridge Deck End Considering Nonlinear Behaviors of the Fastening Systems (체결장치 비선형 거동을 고려한 교량 단부에서의 체결장치 압상력 평가)

  • Yang, Sin Chu;Kim, Hak Hyung;Kong, Jung Sik
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.4
    • /
    • pp.521-528
    • /
    • 2017
  • In this study, vertical loading tests were conducted to investigate the nonlinear behaviors of the fastening systems that have generally been used in the concrete track of domestic railway lines. Nonlinear load-displacement curve models were derived based on the test results. The uplift forces generated in the fastening systems were evaluated by applying the derived nonlinear models as well as the existing linear models. The influence of the factors on the maximum uplift force of the fastening system was analyzed through a parameter study on the distance between neighboring sleepers, the horizontal distance between the center of the bearing and the nearest fastening system from the deck end, and the height of the bridge girder. From the evaluation results it is known that, for economical track and bridge design, due to deck end deformation, it is necessary to consider the nonlinear behavior of the fastening system in the calculation of the uplift force of the fastening systems.

Development of System-level Seismic Fragility Methodology for Probabilistic Seismic Performance Evaluation of Steel Composite Box Girder Bridges (강상자형 합성거더교의 확률론적 내진성능 평가를 위한 시스템-수준 지진취약도 방법의 개발)

  • Sina Kong;Yeeun Kim;Jiho Moon;Jong-Keol Song
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.3
    • /
    • pp.173-184
    • /
    • 2023
  • Presently, the general seismic fragility evaluation method for a bridge system composed of member elements with different nonlinear behaviors against strong earthquakes has been to evaluate at the element-level. This study aims to develop a system-level seismic fragility evaluation method that represents a structural system. Because the seismic behavior of bridges is generally divided into transverse and longitudinal directions, this study evaluated the system-level seismic fragility in both directions separately. The element-level seismic fragility evaluation in the longitudinal direction was performed for piers, bridge bearings, pounding, abutments, and unseating. Because pounding, abutment, and unseating do not affect the transverse directional damages, the element-level seismic fragility evaluation was limited to piers and bridge bearings. Seismic analysis using nonlinear models of various structural members was performed using the OpenSEES program. System-level seismic fragility was evaluated assuming that damage between element-levels was serially connected. Pier damage was identified to have a dominant effect on system-level seismic fragility than other element-level damages. In other words, the most vulnerable element-level seismic fragility has the most dominant effect on the system-level seismic fragility.

Probabilistic Risk Assessment of a Cable-Stayed Bridge Based on the Prediction Method for the Combination of Failure Modes (붕괴모드 조합 예측법에 의한 PSC사장교의 위험도평가)

  • Park, Mi-Yun;Cho, Hyo-Nam;Cho, Taejun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4A
    • /
    • pp.647-657
    • /
    • 2006
  • Probabilistic Risk Assessment considering statistically random variables is performed for the preliminary design of a Cable Stayed Bridge, which is Prestressed Concrete Bridge consisted of cable and plate girders, based on the method of Working Stress Design and Strength Design. Component reliabilities of cables and girders have been evaluated using the response surface of the design variables at the selected critical sections based on the maximum shear, positive and negative moment locations. Response Surface Method (RSM) is successfully applied for reliability analyses for this relatively small probability of failure of the complex structure, which is hard to obtain through Monte-Carlo Simulations. or through First Order Second Moment Method that can not easily calculate the derivative terms of implicit limit state functions. For the analysis of system reliability, parallel resistance system consisting of cables and plate girder is changed into series connection system and the result of system reliability of total structure is presented. As a system reliability, the upper and lower probabilities of failure for the structural system have been evaluated and compared with the suggested prediction method for the combination of failure modes. The suggested prediction method for the combination of failure modes reveals the unexpected combinations of element failures in significantly reduced time and efforts compared with the previous permutation method or system reliability analysis method, which calculates upper and lower bound failure probabilities.

Determination of Structural Member Section based on Nonlinear Behaviors of Steel Cable-Stayed Bridges and Harmony Search Algorithm (강사장교 비선형거동과 하모니 서치 알고리즘에 기반한 사장교 구성 단면 결정)

  • Sang-Soo Ma;Tae-Yun Kwon;Won-Hong Lee;Jin-Hee Ahn
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.4
    • /
    • pp.1-12
    • /
    • 2024
  • In this study, a determination method of structural member section based on Nonlinear behaviors of steel cable-stayed bridges and the Harmony Search algorithm was presented. The Harmony Search algorithm determines the structural member section of cable-stayed bridges by repeating the process of setting the initial value, initializing the harmony memory, configuring the new harmony memory, and updating the harmony memory to search for the optimal value. The nonlinear initial shape analysis of a three-dimensional steel cable-stayed bridge was performed with the cross-section of the main member selected by the Harmony Search algorithm, and the optimal cross-section of the main members of the cable-stayed bridge, such as pylons, girders, cross-beams, and cables, reflecting the complex behavior characteristics and the nonlinearity of each member was determined in consideration of the initial tension and shape. The total weight was used as the objective function for determining the cross-section of the main member of the cable-stayed bridges, and the load resistance ability and serviceability based on the ultimate state design method were used as the restraint conditions. The width and height ratio of the girder and cross-section were considered additional restraint conditions. The optimal sections of the main members were made possible to be determined by considering the geometry and material nonlinearity of the pylons, girders, and cross-sections and the nonlinearity of the cable members. As a result of determining the optimal cross-section, it was confirmed that the proposed analysis method can determine the optimal cross-section according to the various constraint conditions of the cable-stayed bridge, and the structural member section of the cable-stayed bridge considering the nonlinearity can be determined through the Harmony Search algorithm.

Optimization of Ballast Depth of Ballasted Track Bridges to Improve Ride Comfort (승차감 향상을 위한 유도상교량의 도상두께 최적화)

  • Kim, Kwan-Hyung;Kwon, Soon-Jung;Kim, Yun-Tae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.6D
    • /
    • pp.867-874
    • /
    • 2011
  • The ballast abrasion occurs on the ballasted track upon bridges more than soil roadbed because the track vibration occurs a lot in the ballasted track upon bridges due to girder vibration when a train's weight is loaded onto track even though the identical ballast is used. The phenomena of mud pumping especially, which occurs when drainage is not properly secured for heavy rain, leads to the increase of maintenance work load and the decline of ride comfort. The ballast thickness range in domestic railroad construction rule is uniformly set up according to the design speed of railroad and passing tonnage of train without considering field conditions which is considered in foreign railroad companies. The purpose of this study is to verify the effect of vibration decrease by measuring the acceleration, displacement and ride comfort of ballasted track with the change of ballast thickness on the ballast tracked bridges and to suggest the optimal height of ballast on the Yocheon Bridge built for the test in Honam Line.

Measurement and Proposed Design Specification of Temperature Distribution in the Concrete Pylon (콘크리트 주탑의 온도분포 계측 및 설계규정 제안)

  • Hwang, Eui-Seung;Shim, Jae-Soo;Kim, Do-Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.1
    • /
    • pp.1-8
    • /
    • 2014
  • This paper deals with monitoring and analysis of temperature measurement data in concrete pylon of long span cable bridges. During the construction of Geoga Bridge in Busan-Geoje Fixed Link Project, temperature sensors were installed in several sections of hollow box type concrete pylon and temperatures along the depth of the four sides of the section have been recorded along with ambient temperature. Effects of temperature distribution on the pylon are analysed using actual measured data and results are compared with the design guideline. It was found that the temperature load model for concrete girder can be applied to box type concrete pylon. Structural analysis of the pylon due to variation of temperature distribution during the construction is performed using 3D modelling and FE program and the maximum displacements of east-west and north-south side were calculated as 0.056m and 0.121m, respectively.