DOI QR코드

DOI QR Code

Joint Displacement Resistance Evaluation of Waterproofing Material in Railroad Bridge Deck

철도교량상판 방수재료 선정을 위한 균열거동저항 성능평가

  • Bae, Young-Min (Department of Global Railway System, School of Railway Engineering Seoul National University of Science and Technology) ;
  • Oh, Dong-Cheon (Department of Global Railway System, School of Railway Engineering Seoul National University of Science and Technology) ;
  • Park, Yong-Gul (Department of Railway Construction, School of Railway Engineering Seoul National University of Science and Technology)
  • 배영민 (서울과학기술대학교 철도전문대학원 글로벌철도시스템학과) ;
  • 오동천 (서울과학기술대학교 철도전문대학원 글로벌철도시스템학과) ;
  • 박용걸 (서울과학기술대학교 철도전문대학원 철도건설공학과)
  • Received : 2020.09.07
  • Accepted : 2020.11.06
  • Published : 2020.11.30

Abstract

A joint displacement resistance evaluation method for selecting waterproofing materials in railway bridge decks is proposed. The displacement range for an evaluation is determined by finite element method (FEM) analysis of a load case based on an existing high-speed PSC Girder Box railroad bridge structure. The FEM analysis results were used to calculate the minimum joint displacement range to be applied during testing (approximately 1.5 mm). For the evaluation, four commonly used waterproofing membrane types, cementitious slurry coating (CSC), polyurethane coating system (PCS), self-adhesive asphalt sheet (SAS), and composite asphalt sheet (CAS), were tested, with five specimens of each membrane type. The joint displacement width range conditions, including the minimum displacement range obtained from FEM analysis, were set to be the incrementing interval, from 1.5, 3.0, 4.5, and 6.0 mm. The proposal for the evaluation criteria and the specimen test results demonstrated how the evaluation method is important for the sustainability of high-speed railway bridges.

본 논문에서는 철도교량상판에 적용하는 방수재료 선정을 위한 이음부 및 균열부에 대한 거동 저항 성능평가를 수행하였다. PSC거더 철도 교량상판에서 발생하는 일반적인 변위 범위 조건을 도출하여, 도출한 결과에 따라서 방수재료의 균열 거동 저항 성능평가 방법을 개발하였다. 재안하고자 하는 평가를 위한 균열거동폭 (mm)을 설정하기 위해 레일도상이 설치되어있는 PSC 거더 교량을 대상으로 유한요소 모델링 해석을 수행하였으며, 최소 균열 거동 범위 (약 1.5mm)를 도출하였다. 평가 방법으로서는 교량 상판에 통상적으로 사용되는 시멘트계 도막 시스템, 폴리우레탄 코팅, 접착식 아스팔트 시트 및 합성 고무 겔 복합 아스팔트 시트 시스템 총 4가지 종류의 방수재료를 선정하여, 각 방수재료 종류별 5가지의 시편을 제조하여 성능 평가를 수행하였다. 각 시험편별로 4가지의 균열 거동폭조건 (1.5, 3.0, 4.5, 6.0mm)에 대해 평가를 수행하였으며, 본 연구를 통하여 철도교량에 일반적인 균열 거동 폭을 고려한 평가 기준에 따라 각 방수재료별 누수저항성 평가에 따른 철도교량상판 사용 적합성을 판단하였다.

Keywords

References

  1. Korean Rail Network Authority, "Development of bridge surface waterproofing system for railroad bridge deck", Performance evaluation research report by the Korean Rail Network Authority, 2006.
  2. A.R, Price, "Waterproofing of Concrete Bridge Decks: Site Practice and Failures," Transport and Road Research Laboratory, USA, pp. 11-14, 1991.
  3. O. Dammyr, B. Nilsen, K. Thuro, J. Grondal, "Possible Concepts of Waterproofing of Norwegian TBM Railway Tunnels Civil Engineering for Underground Rail Transport," Rock Mechanics and Rock Engineering, vol. 47, no. 3, pp.1-17, Feb. 2013. DOI: https://doi.org/10.1007/s00603-013-0388-5
  4. H. Chbani, S. Bouchra, "Determination of fracture toughness in plain concrete specimens by R curve," Frattura ed Integrità Strutturale, vol. 13, no. 49, pp.763-774, July. 2019. DOI: http://doi.org/10.3221/IGF-ESIS.49.68
  5. D. Benarbia, M. Benguediab, "Determination of Stress Intensity Factor in Concrete Material Under Brazilian Disc and Three-Point Bending Tests Using Finite Element Method," Periodica Polytechnica Mechanical Engineering, vol. 59 no. 4, pp. 199-203, Jan. 2015. DOI:http://doi.org/10.3311/PPme.8368
  6. N. Taniguchi, T. Kouzuiki, A. Tanahashi, H. Ikariyama, T. Yoda, "A Study about the Waterproofing Systems in the Slab for Railway Bridges," 6th Railway Bridge Slab Symposium Journal, Japan, pp. 213-218, Nov. 2004.
  7. A. Chini, L. Acquaye, "Effect of elevated curing temperatures on the strength and durability of concrete," Materials and Structures," vol. 38, no.7 pp673-679, Aug. 2006. DOI:https://doi.org/10.1007/BF02484312
  8. L. Song. Y. Jun, C. Xianhua. Y. Guotao. C. Degou, "Application of Mastic Asphalt Waterproofing Layer in High-Speed Railway Track in Cold Regions," Applied Sciences, vol. 8, no. 5, pp. 667-683, Apr. 2018. DOI: https://doi.org/10.3390/app8050667
  9. J. Rodrigues, A. Dias, P. Providencia, "Timber-Concrete Composite Bridges: State-of-the-Art Review," Bioresources, vol. 8, no. 4, pp. 6630-6649, Nov. 2013. DOI: http://doi.org/10.15376/biores.8.4.6630-6649
  10. Transport Infrastructure Ireland, "Waterproofing and Surfacing of Concrete Bridge Decks," TII Publications, Ireland, pp. 1-50, 2000.