DOI QR코드

DOI QR Code

Development of System-level Seismic Fragility Methodology for Probabilistic Seismic Performance Evaluation of Steel Composite Box Girder Bridges

강상자형 합성거더교의 확률론적 내진성능 평가를 위한 시스템-수준 지진취약도 방법의 개발

  • Sina Kong (Department of Civil Engineering, Kangwon National University) ;
  • Yeeun Kim (Department of Civil Engineering, Kangwon National University) ;
  • Jiho Moon (Department of Civil Engineering, Kangwon National University) ;
  • Jong-Keol Song (Department of Civil Engineering, Kangwon National University)
  • 꽁씨나 (강원대학교 건축.토목.환경공학부) ;
  • 김예은 (강원대학교 건축.토목.환경공학부) ;
  • 문지호 (강원대학교 건축.토목.환경공학부 ) ;
  • 송종걸 (강원대학교 건축.토목.환경공학부 )
  • Received : 2023.03.27
  • Accepted : 2023.05.02
  • Published : 2023.06.30

Abstract

Presently, the general seismic fragility evaluation method for a bridge system composed of member elements with different nonlinear behaviors against strong earthquakes has been to evaluate at the element-level. This study aims to develop a system-level seismic fragility evaluation method that represents a structural system. Because the seismic behavior of bridges is generally divided into transverse and longitudinal directions, this study evaluated the system-level seismic fragility in both directions separately. The element-level seismic fragility evaluation in the longitudinal direction was performed for piers, bridge bearings, pounding, abutments, and unseating. Because pounding, abutment, and unseating do not affect the transverse directional damages, the element-level seismic fragility evaluation was limited to piers and bridge bearings. Seismic analysis using nonlinear models of various structural members was performed using the OpenSEES program. System-level seismic fragility was evaluated assuming that damage between element-levels was serially connected. Pier damage was identified to have a dominant effect on system-level seismic fragility than other element-level damages. In other words, the most vulnerable element-level seismic fragility has the most dominant effect on the system-level seismic fragility.

강진에 대한 다양한 비선형 거동을 하는 부재요소들로 이루어진 교량시스템의 현재까지의 일반적인 지진취약도 평가방법은 부재-수준에서 평가하는 것이다. 본 연구의 목적 부재-수준의 지진취약도 평가결과로부터 구조시스템을 대표하는 시스템-수준의 지진취약도 평가방법을 개발하는 것이다. 교량의 지진 거동을 일반적으로 교축방향과 교축직각방향으로 구분하기 때문에 본 연구에서도 시스템-수준 지진취약도를 두 방향에 대하여 구분해 평가하였다. 길이 방향에 대한 부재-수준의 지진취약도평가는 교각, 교량받침, 충돌, 교대, 낙교에 대하여 수행하였다. 교축직각 방향에 대해서는 충돌, 교대, 낙교의 손상이 영향을 주지 않으므로 부재-수준의 지진취약도평가는 교각과 교량받침에 대하여만 수행하였다. 다양한 구조부재의 비선형모델을 이용한 지진해석은 OpenSEES 프로그램을 사용하여 수행하였다. 시스템-수준의 지진취약도는 부재-수준 사이의 손상이 직렬연결이라고 가정하고 평가하였다. 교각의 손상이 다른 부재-수준의 손상보다 시스템-수준의 지진취약도에 지배적인 영향을 주는 것을 알 수 있었다. 다시 말하면 가장 취약한 부재-수준의 지진취약도가 시스템-수준의 지진취약도에 가장 지배적인 영향을 주는 것을 의미한다.

Keywords

Acknowledgement

이 논문은 2021년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업(No. 2021R1I1A3047237)으로 이에 감사드립니다.

References

  1. Abdel-Mohti, A.M. (2009) Seismic Response Assessment and Recommendations for the Design of Skewed Highway Bridges, University of Nevada, Reno ProQuest Dissertations Publishing, 3369575.
  2. Aviram, A., Mackie, K.R., Stojadinovic, B. (2008) Effect of Abutment Modeling on the Seismic Response of Bridge Structures, Earthq. Eng. & Eng. Vib., 7(4), pp.395~402. https://doi.org/10.1007/s11803-008-1008-3
  3. Cornell, C.A., Jalayer, F., Hamburger, R.O., Foutch, D.A. (2002) Probabilistic Basis for 2000 SAC Federal Emergency Management Agency Steel Moment Frame Guidelines, J. Struct. Eng., 128(4), pp.526~533. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:4(526)
  4. Dutta, A. (1999) On Energy-based Seismic Analysis and Design of Highway Bridges, State University of New York at Buffalo ProQuest Dissertations Publishing, 9918201.
  5. Goldsmith, W. (1960) Impact: The Theory and Physical behavior of Colliding Solids, Edward Arnold Ltd. London, England.
  6. Jeong, Y.H., Song, J.K., Shin, S.B. (2019) Evaluation of Seismic Response Considering the Ageing Effect of Rubber and Lead-Rubber Bearings Applied to PSC Box Bridge, EESK J. Earthq. Eng., 23, pp.311~319.
  7. Maison, B.F., Kasai, K. (1990) Analysis for a Type of Structural Pounding, J. Struct. Eng., 116(4), pp.957~977. https://doi.org/10.1061/(ASCE)0733-9445(1990)116:4(957)
  8. Mazzoni, S., McKenna. F., Scott, M.H., Fenves. G.L. (2007) OpenSees: Open System of Earthquake Engineering Simulation, Pacific Earthquake Engineering Center, Univ. of Calif., Berkeley.
  9. Moschonas, I.F., Kappos, A.J., Panetsos, P. Papadopoulos, V., Makarios, T., Thanopoulos, P. (2009) Seismic Fragility Curves for Greek Bridges: Methodology and Case Studies, Bull Earthq. Eng., 7, pp.439~468. https://doi.org/10.1007/s10518-008-9077-2
  10. Muthukumar, S. (2003) A Contact Element Approach with Hysteresis Damping for the Analysis and Design of Pounding in Bridges, Georgia Institute of Technology.
  11. Nielson, B.G., DesRoches, R. (2007) Seismic Fragility Methodology for Highway Bridges using a Component Level Approach, Earthq. Eng. & Struct. Dyn., 36(6), pp.823~839. https://doi.org/10.1002/eqe.655
  12. Shamsabadi, A., Rollins, K.M., Kapuskar, M. (2007) Nonlinear Soil-Abutment-Bridge Structure Interaction for Seismic Performance-based Design, J. Geotech. & Geoenviron. Eng., 133(6), pp.707~720. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:6(707)
  13. Shinozuka, M., Feng, M.Q, Lee, J., Naganuma, T. (2000) Statistical Analysis of Fragility Curves, J. Eng. Mech., 126(12), pp. 1224~1231. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:12(1224)
  14. Stefanidou, S.P., Kappos, A.J. (2017) Methodology for the Development of Bridge-Specific Fragility Curves, Earthq. Eng. & Struct. Dyn., 46(1), pp.73~93. https://doi.org/10.1002/eqe.2774
  15. Zhang, J., Huo, Y. (2009) Evaluating Effectiveness and Optimum Design of Isolation Devices for Highway Bridges using the Fragility Function Method, Eng. Struct., 31(8), pp.1648~1660. https://doi.org/10.1016/j.engstruct.2009.02.017