• Title/Summary/Keyword: bridge damage

Search Result 769, Processing Time 0.031 seconds

Damage identification in a railroad structures using operational deflection shape (가동변형형상을 이용한 철도구조물의 손상인식)

  • Choi, Sang-Hyun
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.56-64
    • /
    • 2008
  • To maintain effectively the functionality of major railroad facilities such as bridges, identifying and evaluating damage in a structure and taking appropriate action via continuous structural health monitoring are very important. However, most damage identification methods for structural health monitoring developed to date utilize modal domain responses which inevitably contain errors in transforming the domain of responses. In this paper, a damage identification method using time-domain operational deflection shapes is proposed. Since the proposed method utilizes time-domain responses, the error in the process of transformation to response domain can be avoided, and the accuracy of structural health evaluation can be improved. The feasibility of the proposed method is verified via a numerical example of a simple bridge structure.

  • PDF

Basic Study for Development of Risk Based Bridge Maintenance Priority Decision Model (위험도기반 교량 유지관리 우선순위 선정 모델 개발을 위한 기초연구)

  • Kim, Dongiin;Lee, Minjae
    • Korean Journal of Construction Engineering and Management
    • /
    • v.18 no.2
    • /
    • pp.108-116
    • /
    • 2017
  • It is expected that the maintenance cost of domestic bridges will increase considerably due to the increase of bridge service time. In response to this situation, the government and relevant ministries are focusing on developing ways to efficiently allocate limited budgets and to rationally select maintenance bridge. In this study, to develop a risk - based bridge maintenance priority decision model, 14 common risk factors causing damage to bridges were extracted and AHP analysis was performed to select 5 important factors. Based on the existing literature review and expert consultation, we derive the evaluation criteria and the impact weights of the selected factors, and based on this, I presented risk based bridge maintenance priority model. Using this model in combination with existing maintenance priority methods will lead to more reasonable bridge maintenance priorities.

Seismic Performance Evaluation of Full-size Non-seismic Circular RC Bridge Piers with Longitudinal Steel Lap splice (주철근 겹침이음된 실물 비내진 원형 교각의 내진성능평가)

  • Chung Young-Soo;Lee Dae-Hyung;Ko Seong-Hyun;Lee Jae-Hoon
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.5 s.83
    • /
    • pp.697-707
    • /
    • 2004
  • Most bridge piers were practically designed and constructed with lap spliced longitudinal reinforcing steels before the 1992 seismic design provisions of Korea Bridge Design Specification were implemented. It has been known that lap splice of longitudinal reinforcement in the plastic hinge region is not desirable for seismic performance of RC bridge piers. The objective of this research is to evaluate the seismic performance of existing circular reinforced concrete bridge piers by the Quasi-static test and to propose the need of seismic retrofit of existing bridge piers through the damage level. Test specimens were nonseismically designed with the aspect ratio 4.0 which could induce the flexural failure mode. It was confirmed from this experiment that significant reduction of seismic performance was observed for test specimens with lap spliced longitudinal reinforcing steels. Pertinent seismic retrofit was determined to be needed for existing RC bridge piers with the lap-spliced of $50\%$ longitudinal reinforcing steels.

Responses of self-anchored suspension bridge to sudden breakage of hangers

  • Qiu, Wenliang;Jiang, Meng;Zhang, Zhe
    • Structural Engineering and Mechanics
    • /
    • v.50 no.2
    • /
    • pp.241-255
    • /
    • 2014
  • The girder of self-anchored suspension bridge is subjected to large compression force applied by main cables. So, serious damage of the girder due to breakage of hangers may cause collapse of the whole bridge. With the time increasing, the hangers may break suddenly for their resistance capacities decrease due to corrosion. Using nonlinear static and dynamic analysis methods and adopting 3D finite element model, the responses of a concrete self-anchored suspension bridge to sudden breakage of hangers are studied in this paper. The results show that the sudden breakage of a hanger has significant effects on tensions of the hangers next to the broken hanger, bending and torsion moments of the girder, moments of the towers and reaction forces of the bearings. The results obtained from dynamic analysis method are very different from those obtained from static analysis method. The maximum tension of hanger produced by breakage of a hanger exceeds 2.2 times of its initial value, the maximum dynamic amplification factor reaches 2.54, which is larger than the value of 2.0 recommended for cable-stayed bridge in PTI codes. If two adjacent hangers on the same side of bridge break one after another, the maximum tension of other hangers exceeds 3.0 times of its initial value. If the safety factor adopted to design hanger is too small, or the hangers have been exposed to corrosion, the bridge may collapse due to breakage of two adjacent hangers.

Buffeting-induced stresses in a long suspension bridge: structural health monitoring oriented stress analysis

  • Liu, T.T.;Xu, Y.L.;Zhang, W.S.;Wong, K.Y.;Zhou, H.J.;Chan, K.W.Y.
    • Wind and Structures
    • /
    • v.12 no.6
    • /
    • pp.479-504
    • /
    • 2009
  • Structural health monitoring (SHM) systems have been recently embraced in long span cable-supported bridges, in which buffeting-induced stress monitoring is one of the tasks to ensure the safety of the bridge under strong winds. In line with this task, this paper presents a SHM-oriented finite element model (FEM) for the Tsing Ma suspension bridge in Hong Kong so that stresses/strains in important bridge components can be directly computed and compared with measured ones. A numerical procedure for buffeting induced stress analysis of the bridge based on the established FEM is then presented. Significant improvements of the present procedure are that the effects of the spatial distribution of both buffeting forces and self-excited forces on the bridge deck structure are taken into account and the local structural behaviour linked to strain/stress, which is prone to cause local damage, are estimated directly. The field measurement data including wind, acceleration and stress recorded by the wind and structural health monitoring system (WASHMS) installed on the bridge during Typhoon York are analyzed and compared with the numerical results. The results show that the proposed procedure has advantages over the typical equivalent beam finite element models.

Definition, End-of-life Criterion and Prediction of Service Life for Bridge Maintenance (교량의 유지관리를 위한 사용수명 정의, 종료 기준, 추정)

  • Jeong, Yo-Seok;Kim, Woo-Seok;Lee, Il-Keun;Lee, Jae-Ha;Kim, Jin-Kwang
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.4
    • /
    • pp.68-76
    • /
    • 2016
  • The present study proposes the definition of service life and the end-of-life criterion for bridge maintenance. Bridges begin to deteriorate as soon as they are put into service. Effective bridge maintenance requires sound understanding of the deterioration mechanism as well as the expected service life. In order to determine the expected service life of a bridge for effective bridge maintenance, it is necessary to have a clear definition of service life and end-of-life. However, service life can be viewed from several perspectives based on literature review. The end of a bridge's life can be also defined by more than one perspective or performance measure. This study presents definition of service life which can be used for bridge maintenance and the end-of life criterion using the performance measure such as a damage score. The regression model can predict an average service life of bridges using the proposed end-of-life criterion.

Performance of passive and active MTMDs in seismic response of Ahvaz cable-stayed bridge

  • Zahrai, Seyed Mehdi;Froozanfar, Mohammad
    • Smart Structures and Systems
    • /
    • v.23 no.5
    • /
    • pp.449-466
    • /
    • 2019
  • Cable-stayed bridges are attractive due to their beauty, reducing material consumption, less harm to the environment and so on, in comparison with other kinds of bridges. As a massive structure with long period and low damping (0.3 to 2%) under many dynamic loads, these bridges are susceptible to fatigue, serviceability disorder, damage or even collapse. Tuned Mass Damper (TMD) is a suitable controlling system to reduce the vibrations and prevent the threats in such bridges. In this paper, Multi Tuned Mass Damper (MTMD) system is added to the Ahvaz cable stayed Bridge in Iran, to reduce its seismic vibrations. First, the bridge is modeled in SAP2000 followed with result verification. Dead and live loads and the moving loads have been assigned to the bridge. Then the finite element model is developed in OpenSees, with the goal of running a nonlinear time-history analysis. Three far-field and three near-field earthquake records are imposed to the model after scaling to the PGA of 0.25 g, 0.4 g, 0.55 g and 0.7 g. Two MTMD systems, passive and active, with the number of TMDs from 1 to 8, are placed in specific points of the main span of bridge, adding a total mass ratio of 1 to 10% to the bridge. The parameters of the TMDs are optimized using Genetic Algorithm (GA). Also, the optimum force for active control is achieved by Fuzzy Logic Control (FLC). The results showed that the maximum displacement of the center of the bridge main span reduced 33% and 48% respectively by adding passive and active MTMD systems. The RMS of displacement reduced 37% and 47%, the velocity 36% and 42% and also the base shear in pylons, 27% and 47%, respectively by adding passive and active systems, in the best cases.

Seismic behavior and design method of socket self-centering bridge pier with hybrid energy dissipation system

  • Guo, Mengqiang;Men, Jinjie;Fan, Dongxin;Shen, Yanli
    • Earthquakes and Structures
    • /
    • v.23 no.3
    • /
    • pp.271-282
    • /
    • 2022
  • Seismic resisting self-centering bridge piers with high energy dissipation and negligible residual displacement after an earthquake event are focus topics of current structural engineering. The energy dissipation components of typical bridge piers are often relatively single; and exhibit a certain level of damage under earthquakes, leading to large residual displacements and low cumulative energy dissipation. In this paper, a novel socket self-centering bridge pier with a hybrid energy dissipation system is proposed. The seismic resilience of bridge piers can be improved through the rational design of annular grooves and rubber cushions. The seismic response was evaluated through the finite element method. The effects of rubber cushion thickness, annular groove depth, axial compression ratio, and lateral strength contribution ratio of rubber cushion on the seismic behavior of bridge piers are systematically studied. The results show that the annular groove depth has the greatest influence on the seismic performance of the bridge pier. Especially, the lateral strength contribution ratio of the rubber cushion mainly depends on the depth of the annular groove. The axial compression ratio has a significant effect on the ultimate bearing capacity. Finally, the seismic design method is proposed according to the influence of the above research parameters on the seismic performance of bridge piers, and the method is validated by an example. It is suggested that the range of lateral strength contribution ratio of rubber cushion is 0.028 ~ 0.053.

Stress distribution on the real corrosion surface of the orthotropic steel bridge deck

  • Kainuma, Shigenobu;Jeong, Young-Soo;Ahn, Jin-Hee
    • Steel and Composite Structures
    • /
    • v.18 no.6
    • /
    • pp.1479-1492
    • /
    • 2015
  • This study evaluated the localized stress condition of the real corroded deck surface of an orthotropic steel bridge because severe corrosion damage on the deck surface and fatigue cracking were reported. Thus, a three-dimensional finite element (FE) analysis model was created based on measurements of the corroded orthotropic steel deck surface to examine the stress level dependence on the corrosion condition. Based on the FE analysis results, it could be confirmed that a high stress concentration and irregular stress distribution can develop on the deck surface. The stress level was also increased by approximately 1.3-1.5 times as a result of the irregular corroded surface. It was concluded that this stress concentration could increase the possibility of fatigue cracking in the deck surface because of the surface roughness of the orthotropic steel bridge deck.

A Study on the Mock-up Test of Waterproofing/Root Penetration Resistance Technology for the Application to an Eco-bridge (생태교량 적용을 위한 방수·방근공법의 Mock-up 시험 연구)

  • Seon, Yun-Suk;Choi, Su-Young;Kim, Meong-Ji;Choi, Sung-Min;Oh, Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.230-231
    • /
    • 2014
  • This study is concerned with the root penetration resistance competence and constructability of a waterproofing and root penetration resistance layer of an eco-bridge which is applied with various types of seeding. For the review of root penetration resistance competence, the competence was tested using herbs, woody plants, and tall trees. As a result, there was no tear of or damage to the waterproofing and root penetration resistance layer as well as the sweeping-down phenomenon of a waterproofing and root penetration resistance layer by soil. Also, the effect of the root growth of herbs, woody plants, and tall trees on the root penetration resistance system was confirmed.

  • PDF