• Title/Summary/Keyword: bridge acceleration

Search Result 328, Processing Time 0.024 seconds

Vibration Serviceability Evaluation of Prestressed Concrete Girder Bridge (공용중인 PSC 거더 교량의 진동사용성 평가)

  • Park, Sun-Joon;Kang, Sung-Hoo;Kim, Bo-Hwoan;Kim, Seung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.781-786
    • /
    • 2009
  • The thesis shows that we gauged vibration of vehicular load regarding WPC girder bridge and researched into dynamic characteristics(natural frequency, vibration acceleration) of WPC girder bridge. By the basic of that, we researched on vibration serviceability by looking over and being compared to vibration criteria we had before. In the thesis, the gauged vibration made an analysis of vertical acceleration through FFT method and evaluated vibration serviceability about vibration sense the body feels by means of the standard of ISO assessment standard and Meister assessment standard by referring to analysis data. This research on bridge is WPC girder bridge of 90m span, width of 5.5m, and the experiment was gauged by a fluent which is right way and inverse way about dump truck of gross 270kN. Acceleration was located in the middle of 1st span, 2nd span, 3rd span. As a result of appraisal standard of Meister, the vibrations of the bridge have distributed between "Level C, Strongly Perceptible" and "Level B, Disturbing". Also the vibration can be attacked with unpleasant feeling. As a result of appraisal standard of ISO, from vibration influence didn't come to 60s, and reduced comfort boundary in part of most rigorous standard that such a case didn't happen.

  • PDF

Vibration Serviceability Evaluation of Prestressed Concrete Girder Bridge (공용중인 PSC 거더 교량의 진동사용성 평가)

  • Kang, Sung-Hoo;Kim, Bo-Hwoan;Park, Sun-Joon;Kim, Seung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.4
    • /
    • pp.331-337
    • /
    • 2010
  • The thesis shows that we gauged vibration of vehicular load regarding WPC girder bridge and researched into dynamic characteristics(natural frequency, vibration acceleration) of WPC girder bridge. By the basic of that, we researched on vibration serviceability by looking over and being compared to vibration criteria we had before. In the thesis, the gauged vibration made an analysis of vertical acceleration through FFT method and evaluated vibration serviceability about vibration sense the body feels by means of the standard of ISO assessment standard and Meister assessment standard by referring to analysis data. This research on bridge is WPC girder bridge of 90 m span, width of 5.5 m, and the experiment was gauged by a fluent which is right way and inverse way about dump truck of gross 270 kN. Acceleration was located in the middle of 1st span, 2nd span, 3rd span. As a result of appraisal standard of Meister, the vibrations of the bridge have distributed between "level C, strongly perceptible" and "level B, disturbing". Also the vibration can be attacked with unpleasant feeling. As a result of appraisal standard of ISO, from vibration influence didn't come to 60s, and reduced comfort boundary in part of most rigorous standard that such a case didn't happen.

Analysis of Bridge Deck Acceleration under the High-speed Train (고속철도열차하중에 의한 교량의 가속도 분석)

  • Yoon, Hye-Jin;Chin, Won-Jong;Choi, Eun-Suk;Kang, Jae-Yoon;Kwark, Jong-Won;Kim, Byung-Suk
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1550-1554
    • /
    • 2011
  • In this paper the effect of frequency domain on the estimation of acceleration of high-speed railway bridges was investigated. Field test was conducted for two bridges. One bridge has ballasted tracks, the other slab tracks. Acceleration and displacement were measured. Effect of filtering on acceleration and displacement was analyzed.

  • PDF

Vibration Control of Bridge for Serviceability (교량의 사용성 증가를 위한 진동제어)

  • 허준식;조지성;박선규;이인원
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.362-369
    • /
    • 2002
  • This paper mainly propose the new passive vibration control device, named BRV(the bridge reduced vibration), for reducing excessive traffic-induced vibration of bridges and for measuring performance of BRV numerical example was simulated. The purpose of BRV is mainly on reducing vertical acceleration and displacement of bridge. In BRV we can control the stiffness and damping coefficient to accept the performance we want. The result of simulation showed that the vertical acceleration and displacement was effectively diminished. It would be concluded that BRV can be used to improve the serviceability of bridge and fatigue life etc.

  • PDF

Dynamic Characteristics of High-speed Railway Steel Bridges (고속철도 강교량의 진동특성 분석)

  • Lee, Jung-Whee;Kim, Sung-Il;Kwark, Jong-Won;Lee, Pil-Goo;Yoon, Tae-Yang
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.7 s.124
    • /
    • pp.632-637
    • /
    • 2007
  • The dynamic behavior of two steel bridges crossed by the Korean High Speed Train(KHST) has been investigated experimentally and the results are compared with the specification requirement of BRDM and other typical PSC Box bridge's responses. The investigated bridges are a 2-girder steel bridge of 1@40m span length(E-Won Bridge), 2@50m span length (Ji-Tan Bridge), and a PSC Box girder bridge of 2@40m span length (Yeon-Jae Bridge). A set of experimental tests were performed during operation of KHST, and a number of accelerometers, LVDTs and ring-type displacement transducers were utilized for measurement of three kinds of dynamic responses (acceleration, deflection, and end-rotation angle). Measured responses show that the vertical deflections and end-rotation angles of the three bridges are all satisfying the spec. requirement with large margin, but it was also found acceleration responses which are very close or exceed the limit value. Most of the excessive acceleration responses were found when the passing velocity of the KHST is close to the critical velocity ($V_{cr}$) which causes resonance. No noticeable differences of dynamic responses due to the different materials(steel or concrete) could be found within these experimental results.

Finite element model calibration of a steel railway bridge via ambient vibration test

  • Arisoy, Bengi;Erol, Osman
    • Steel and Composite Structures
    • /
    • v.27 no.3
    • /
    • pp.327-335
    • /
    • 2018
  • This paper presents structural assessment of a steel railway bridge for current condition using modal parameter to upgrade finite element modeling in order to gather accurate result. An adequate monitoring, such as acceleration, displacement, strain monitoring, is important tool to understand behavior and to assess structural performance of the structure under surround vibration by means of the dynamic analysis. Evaluation of conditions of an existing steel railway bridge consist of 4 decks, three of them are 14 m, one of them is 9.7 m, was performed with a numerical analysis and a series of dynamic tests. Numerical analysis was performed implementing finite element model of the bridge using SAP2000 software. Dynamic tests were performed by collecting acceleration data caused by surrounding vibrations and dynamic analysis is performed by Operational Modal Analysis (OMA) using collected acceleration data. The acceleration response of the steel bridge is assumed to be governing response quantity for structural assessment and provide valuable information about the current statute of the structure. Modal identification determined based on response of the structure play significant role for upgrading finite element model of the structure and helping structural evaluation. Numerical and experimental dynamic properties are compared and finite element model of the bridge is updated by changing of material properties to reduce the differences between the results. In this paper, an existing steel railway bridge with four spans is evaluated by finite element model improved using operational modal analysis. Structural analysis performed for the bridge both for original and calibrated models, and results are compared. It is demonstrated that differences in natural frequencies are reduced between 0.2% to 5% by calibrating finite element modeling and stiffness properties.

Analysis of the Characteristics of Dynamic Frequency Responses in Railway Plate Girder Bridges (철도 판형교의 동적응답 주파수 특성에 대한 분석)

  • 오지택;최진유;김현민
    • Proceedings of the KSR Conference
    • /
    • 2002.10b
    • /
    • pp.1035-1040
    • /
    • 2002
  • Railway plate girder bridges have characteristics that are not show dominant frequency in dynamic response frequencies like obtained vertical acceleration on the bridge during the train passing because the train loading relatively bigger than the bridge self-weight. This paper experimentally confirmed in FFT result has various frequencies due to inherent characteristic of railway train loading. To establish classification of dynamic frequency range in railway bridge acceleration during the train passing, vibration frequencies result from experimental test are analyzed concerning actuation vibration factors. Factors are train velocity, train type, mass ratio of vehicle/bridge, stiffness of bridge, bridge/track and vehicle/track. From the result, it is proposed that the frequencty classfication table with corresponding factors. Using the proposed table to develop rehabilitation technique of the plate girder bridge, to expect vibration reduction and comfort enhancement of the railway plate girder bridge.

  • PDF

Cumulative deformation of high-speed railway bridge pier under repeated earthquakes

  • Gou, Hongye;Leng, Dan;Bao, Yi;Pu, Qianhui
    • Earthquakes and Structures
    • /
    • v.16 no.4
    • /
    • pp.391-399
    • /
    • 2019
  • Residual deformation of high-speed railway bridge piers is cumulative under repeated earthquakes, and influences the safety and ride comfort of high-speed trains. This paper investigates the effects of the peak ground acceleration, longitudinal reinforcement ratio, and axial compression ratio on the cumulative deformation through finite element analysis. A simply-supported beam bridge pier model is established using nonlinear beam-column elements in OpenSees, and validated against a shaking table test. Repeated earthquakes were input in the model. The results show that the cumulative deformation of the bridge piers under repeated earthquakes increases with the peak ground acceleration and the axial compression ratio, and decreases with the longitudinal reinforcement ratio.

Investigation on vibration behavior of a high-speed railway bridge based on monitoring data

  • Qingxin Zhu;Hao Wang;Billie F. Spencer Jr
    • Smart Structures and Systems
    • /
    • v.31 no.6
    • /
    • pp.585-599
    • /
    • 2023
  • Field monitoring techniques offer an attractive approach for understanding bridge behavior under in-service loads. However, the investigations on bridge behavior under high-speed train load using field monitoring data are limited. The focus of this study is to explore the structural behavior of an in-service long-span steel truss arch bridge based on field monitoring data. First, the natural frequencies of the structure, as well as the train driving frequencies, are extracted. Then, the train-induced bearing displacement and structural strain are explored to identify the effects of train loads and bearings. Subsequently, a sensitivity analysis is performed for the impact factor of strain responses with respect to the train speed, train weight, and temperature to identify the fundamental issues affecting these responses. Additionally, a similar sensitivity analysis is conducted for the peak acceleration. The results indicate that the friction force in bearings provides residual deformations when two consecutive trains are in opposite directions. In addition, the impact factor and peak acceleration are primarily affected by train speed, particularly near train speeds that result in the resonance of the bridge response. The results can provide additional insight into the behavior of the long-span steel truss bridges under in-service high-speed train loads.

Traffic Safety & Passenger Comforts of a Suspension Bridge Considering Seismic Loads (고속열차 주행 시 지진하중을 고려한 현수교의 주행안전성 및 승차감 분석)

  • Kim, Sung-Il;Kim, Dong-Seok
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.1
    • /
    • pp.57-65
    • /
    • 2011
  • The estimation of traffic safety and passenger comfort when the train is running on the bridge is a estimation unique to the railway bridge. The standards for such estimation are included in the Eurocode, the Shinkansen design criteria, and the design guideline of the Honam High-speed railway. The items are bridge responses including vertical displacement of bridge, vertical acceleration, and slab twist. In principle, a direct estimation based on the train responses has to take place. However, the estimation based on the bridge responses can be seen as an indirect estimation procedure for the convenience of the bridge designer. First, it is general practice that traffic safety can be verified as a derailment coefficient or wheel load decrement The general method of estimating passenger comfort is to calculate the acceleration within the train car-body. Various international indexes have been presented for this method. In the present study, traffic safety and passenger comforts are estimated directly by bridge/train interaction analysis. The acceleration and wheel load decrement are obtained for the estimation of traffic safety and passenger comforts of a suspension bridge which has main span length of 300m. Also, the consideration of seismic load with simultaneous action of moving train is done for bridge/train/earthquake interaction analysis.